decay constant

form factors

B-physics with domain-wall light quarks and nonperturbatively tuned relativistic *b*-quarks RBC and UKQCD collaborations

Oliver Witzel Center for Computational Science

XXVI IUPAP Conference on Computational Physics 2014

Motivation: Constraining the Standard Model

- \blacktriangleright Determination of CKM matrix elements V_{ub} and V_{cb}
- ▶ B-physics provides constraints on the apex of the CKM unitarity triangle
 ▶ B⁰-B⁰ mixing
 - ▶ V_{ub} and V_{cb} e.g. from $B \to \pi \ell \nu$ and $\overline{B} \to D^* \ell \nu$ form factors

Experimental results and nonperturbative inputs are needed

[http://ckmfitter.in2p3.fr, http://utfit.roma1.infn.it, http://www.latticeaverages.org]

decay constant

form factors

Example: V_{ub} from exclusive semileptonic decay $B \rightarrow \pi \ell \nu$

$$\frac{d\Gamma(B \to \pi \ell \nu)}{dq^2} = \frac{G_F^2}{192\pi^3 M_B^3} \left[\left(M_B^2 + M_\pi^2 - q^2 \right)^2 - 4M_B^2 M_\pi^2 \right]^{3/2} \times \left| f_+(q^2) \right|^2 \times \left| V_{ub} \right|^2$$
experiment known nonperturbative input CKM

Motivation: New Physics in rare *B*-decays?

- B
 ightarrow au
 u [UTfit Phys.Lett. B687 (2010) 61]
 - ▶ f_B is needed for the Standard-Model prediction of $BR(B \rightarrow \tau \nu)$
 - \blacktriangleright Potentially sensitive to charged-Higgs exchange due to large τ mass

$B_s ightarrow \mu_+ \mu_-$ [Buras et al. Eur.Phys.J. C72 (2012) 2172, Buras et al. arXiv:1303.3820 [hep-ph]]

- \blacktriangleright f_{B_s} is needed for Standard-Model prediction of $BR(B_s \rightarrow \mu_+\mu_-)$
- Strong sensitivity to NP because FCNC processes are suppressed by the Glashow-Iliopoulos-Maiani (GIM)-mechanism in the SM
- ▶ Measured by LHCb with 3.5 σ significance [LHCb Phys.Rev.Lett. 110 (2013) 02180], at EPS2013: combination of LHCb and CMS results gives > 5 σ significance
 - in agreement with SM

Both are sensitive to new physics!

Challenges for *B*-physics on the lattice

- ▶ The mass of the *b*-quark introduces another scale
 - ▶ Light quark masses: $m_u = 2.3$ MeV, $m_d = 4.8$ MeV, $m_s = 95$ MeV
 - Mass of the *b*-quark: $m_b = 4.18 \text{ GeV}$
- ► Today's lattices have an inverse lattice spacing of a⁻¹ ≈ 1.7 ... 3 GeV
 ► am_b > 1
 - ► Forced to simulate *b*-quarks with an effective action e.g. HQET (static), NRQCD, Fermilab or RHQ action
- ▶ Relativistic Heavy Quark (RHQ) action
 - Anisotropic action to simulate dynamical b-quarks
 - ▶ Similar size discretization errors in heavy-light quantities as in light-light
 - ▶ Requires (perturbative) mixed-action renormalization factors

form factors

Our project

- Based on RBC-UKQCD's 2+1 flavor domain-wall lwasaki gauge field configurations
- Use domain-wall light quarks and nonperturbatively tuned relativistic b-quarks to compute at few-percent precision
 - ▶ $B^0 \overline{B^0}$ mixing
 - Decay constants f_B and f_{B_s}
 - $B \to \pi \ell \nu$ and $B_s \to K \ell \nu$ form factors [Taichi Kawanai]
 - $g_{B^*B\pi}$ coupling constant [Ben Samways]

▶ Provides important cross-check of other *N_f* = 2 + 1 determinations using the MILC staggered ensembles

decay constant •00000 form factors

conclusion & outlook

B-meson decay constant [arXiv:1404.4670 [hep-lat]]

▶ Use point-source light quark and generate Gaussian smeared-source heavy quark
 ▶ On the lattice we compute Φ_{Ba}

$$f_B=\Phi_{B_q}^{
m ren}\cdot a_{32}^{-3/2}\!/\!\sqrt{M_{B_q}}$$

▶ Improve axial current at 1-loop ($O(\alpha_{s}a)$, perturbatively computed coefficient)

▶ Use mostly-nonperturbative renormalization [El-Khadra et al. Phys.Rev. D64 (2001) 014502]

$$Z_V^{bl} = \varrho^{bl} \cdot \sqrt{Z_V^{bb} Z_V^{ll}}$$

decay constant

form factors

conclusion & outlook

B-meson decay constant [arXiv:1404.4670 [hep-lat]]

▶ Perform analysis in terms of dimensionless ratios over M_{B_s}

decay constant

form factors

Chiral-continuum extrapolation of f_B [arXiv:1404.4670 [hep-lat]]

decay constant

form factors

conclusion & outlook

Continuum extrapolation of f_{B_s} [arXiv:1404.4670 [hep-lat]]

- ► Data for Φ_{Bs} show no sea-quark mass dependence
- Average data at same lattice spacing
- Assume a² scaling to remove LQ and gluon discretization errors
- Statistical errors only

decay constant 000000 form factors

Error budget [arXiv:1404.4670 [hep-lat]]

	$f_{B^0}(\%)$	$f_{B^+}(\%)$	$f_{B_s}(\%)$
statistics	3.2	3.2	2.2
chiral-continuum extrapolation	6.5	6.6	3.1
lattice-scale uncertainty	1.5	1.5	1.5
light- and strange-quark mass	0.1	0.2	0.9
uncertainty			
RHQ parameter tuning	1.2	1.2	1.2
HQ discretization errors	1.7	1.7	1.7
LQ and gluon disc. errors	1.1	1.1	1.2
renormalization factor	1.7	1.7	1.7
finite volume	0.4	0.4	0.0
isospin-breaking and EM	0.7	0.7	0.7
total	8.0	8.1	5.2

form factors

Comparison with other results [arXiv:1404.4670 [hep-lat]]

▶ Good agreement with other results

FLAG: S. Aoki et al. arXiv:1310.8555 [hep-lat]

- [1] Carrasco et al. arXiv:1311.2837 [hep-lat]
- [2] Dowdall et al. Phys.Rev.Lett. 110 (2012) 222003
- [3] Na et al. Phys.Rev.D86 (2012) 034506
- [4] McNeile et al. Phys.Rev.D85 (2012) 031503
- [5] Bazavov et al. Phys.Rev.D85 (2012) 114506
- [6] Bernardoni et al. arXiv:1404.3590 [hep-lat]
- [7] Carrasco et al. PoS LATTICE2012 (2012) 104

t

 $B \to \pi \ell \nu$: computation of lattice form factors f_{\parallel} and f_{\perp} (which are linearly related to f_+ and f_0)

$$t_{0} \qquad f_{\parallel} = \lim_{t, T \to \infty} R_{0}^{B \to \pi}(t, T)$$

$$f_{\perp} = \lim_{t, T \to \infty} \frac{1}{p_{\pi}^{i}} R_{i}^{B \to \pi}(t, T)$$

$$R_{\mu}^{B \to \pi}(t, T) = \frac{C_{3,\mu}^{B \to \pi}(t, T)}{C_{2}^{\pi}(t)C_{2}^{B}(T - t)} \sqrt{\frac{2E_{\pi}}{e^{-E_{\pi}t}e^{-M_{B}(T - t)}}}$$

[plots by Taichi Kawanai]

[plots by Taichi Kawanai]

decay constant

form factors

conclusion & outlook

Combine with experimental data to determine $|V_{ub}|$

[plot by Taichi Kawanai]

decay constant

form factors

Conclusion

- ▶ Results for decay constants f_B and f_{B_s} are posted and submitted to PRD
 - ▶ Good agreement with results in the literature
 - Errors dominated by chiral-continuum extrapolation
- Already improving our errors by simulating with physical pion mass
- Another ensemble with finer lattice spacing will be added
- ▶ Finalizing analyses for $B \rightarrow \pi \ell \nu$ and $B_s \rightarrow K \ell \nu$ form factors
 - Promising looking results
- First determination of the g_{B*Bπ} coupling with relativistic b-quarks (publication in preparation)
- Measurements for $B^0 \overline{B^0}$ mixing are in progress

decay constant

form factors

conclusion & outlook

Appendix

form factors

2+1 flavor domain-wall gauge field configurations

- Domain-wall fermions for the light quarks (u, d, s) [Kaplan Phys.Lett. B288 (1992) 342] [Shamir Nucl.Phys. B406 (1993) 90]
- Iwasaki gauge action [Iwasaki UTHEP-118(1983)]
- Configurations generated by RBC and UKQCD collaborations [C. Allton et al. Phys.Rev. D78 (2008) 114509, Y. Aoki et al. Phys.Rev. D83 (2011) 074508]

L	<i>a</i> (fm)	m _l	m _s	$M_{\pi}({ m MeV})$	approx. $\#$ configs.	# time sources
24	pprox 0.11	0.005	0.040	329	1636	1
24	pprox 0.11	0.010	0.040	422	1419	1
32	pprox 0.08	0.004	0.030	289	628	2
32	pprox 0.08	0.006	0.030	345	889	2
32	pprox 0.08	0.008	0.030	394	544	2

Relativistic heavy quark action for the *b*-quarks

- Relativistic Heavy Quark action developed by Christ, Li, and Lin [Christ et al. Phys.Rev. D76 (2007) 074505; Lin and Christ Phys.Rev. D76 (2007) 074506]
- Builds upon Fermilab approach [EI-Khadra et al. Phys.Rev. D55 (1997) 3933] by tuning all parameters of the clover action non-perturbatively; close relation to the Tsukuba formulation [S. Aoki et al. Prog.Theor.Phys. 109 (2003) 383]
- Heavy quark mass is treated to all orders in $(m_b a)^n$
 - Applies for all values of the quark mass
- **•** Expand in powers of the spatial momentum through $O(\vec{p}a)$
 - Resulting errors will be of $O(\vec{p}^2 a^2)$
 - Allows computation of heavy-light quantities with discretization errors of the same size as in light-light quantities
- ► Tune parameters to physical *b*-quarks i.e. require:
 - ▶ Spin-averaged mass and hyperfine splitting of the *B_s*-meson agree with experiment
 - ▶ B_s-meson rest and kinetic masses are equal

 \blacktriangleright Validated by computing $b\bar{b}$ masses and splittings [Phys.Rev. D86 (2012) 116003]

form factors

$B o \pi \ell \nu$: relating form factors f_+ and f_0 to f_{\parallel} and f_{\perp}

► Parametrize the hadronic matrix element for the flavor changing vector current V^µ in terms of the form factors f₊(q²) and f₀(q²)

$$\langle \pi | V^{\mu} | B
angle = {\it f}_+(q^2) \left({\it p}_B^{\mu} + {\it p}_\pi^{\mu} - rac{M_B^2 - M_\pi^2}{q^2} q^{\mu}
ight) + {\it f}_0 rac{M_B^2 - M_\pi^2}{q^2} q^{\mu}$$

▶ Using the *B*-meson rest frame we compute on the lattice

 $f_{\parallel}(E_{\pi}) = \langle \pi | V^0 | B \rangle / \sqrt{2M_B}$ and $f_{\perp}(E_{\pi}) p_{\pi}^i = \langle \pi | V^i | B \rangle / \sqrt{2M_B}$

Both are related by

$$\begin{split} f_0(q^2) &= \frac{\sqrt{2M_B}}{M_B^2 - M_\pi^2} \left[(M_B - E_\pi) f_{\parallel}(E_\pi) + (E_\pi^2 - M_\pi^2) f_{\perp}(E_\pi) \right] \\ f_+(q^2) &= \frac{1}{\sqrt{2M_B}} \left[f_{\parallel}(E_\pi) + (M_B - E_\pi) f_{\perp}(E_\pi) \right] \end{split}$$