Semileptonic B_s decays

Oliver Witzel (RBC-UKQCD collaborations)

CIPANP 2017, Palm Springs, CA, June 01, 2018

RBC- and UKQCD collaborations

BNL/RBRC

Mattia Bruno Taku Izubuchi Luchang Jin Chulwoo Jung Christoph Lehner Meifeng Lin Hiroshi Ohki Shigemi Ohta (KEK) Amarjit Soni Sergey Syritsyn

Columbia U

Ziyuan Bai Norman Christ Duo Guo Christopher Kelly Bob Mawhinney David Murphy Masaaki Tomii Jiqun Tu Bigeng Wang Tianle Wang

U Edinburgh

Peter Boyle Guido Cossu Luigi Del Debbio Tadeusz Janowski Richard Kenway Julia Kettle Brian Pendleton Antonin Portelli Tobias Tsang Azusa Yamaguchi

U Southampton

Jonathan Flynn Vera Gülpers James Harrison Andreas Jüttner Andrew Lawson Edwin Lizarazo Chris Sachrajda

U Connecticut

Tom Blum Dan Hoying Cheng Tu U Colorado Boulder Oliver Witzel

Peking U Xu Feng

KEK

Julien Frison

York U (Toronto) Renwick Hudspith

U Liverpool Nicolas Garron

RBC- and UKQCD collaborations

BNL/RBRC

Mattia Bruno Taku Izubuchi Luchang Jin Chulwoo Jung Christoph Lehner Meifeng Lin Hiroshi Ohki Shigemi Ohta (KEK) Amarjit Soni Sergey Syritsyn

U Connecticut

Tom Blum Dan Hoying Cheng Tu

Columbia U

Ziyuan Bai Norman Christ Duo Guo Christopher Kelly Bob Mawhinney David Murphy Masaaki Tomii Jiqun Tu Bigeng Wang Tianle Wang

U Colorado Boulder Oliver Witzel

Peking U Xu Feng

U Edinburgh

Peter Boyle Guido Cossu Luigi Del Debbio Tadeusz Janowski Richard Kenway Julia Kettle Brian Pendleton Antonin Portelli **Tobias Tsang** Azusa Yamaguchi U Southampton Jonathan Flynn Vera Gülpers James Harrison Andreas Jüttner Andrew Lawson Edwin Lizarazo Chris Sachrajda

KEK Julien Frison

York U (Toronto) Renwick Hudspith

U Liverpool Nicolas Garron

introduction

Why B_s meson decays?

- Alternative, tree-level determination of |V_{cb}| and |V_{ub}| from B_s → D_sℓν and B_s → Kℓν
 - \rightarrow Commonly used $B \rightarrow \pi \ell \nu$ and $B \rightarrow D^{(*)} \ell \nu$
 - ightarrow Long standing 2 3 σ discrepancy between exclusive ($B
 ightarrow \pi \ell \nu$) and inclusive ($B
 ightarrow X_u \ell \nu$)
 - ightarrow B
 ightarrow au
 u has larger error
 - \rightarrow Alternative, exclusive ($\Lambda_b \rightarrow p \ell \nu$) determination [Detmold, Lehner, Meinel, PRD92 (2015) 034503]

[http://ckmfitter.in2p3.fr]

[HFLAV]

Why B_s meson decays?

- ► Alternative tests of lepton flavor violations
 - \rightarrow Determine e.g. $R_{D_{s}^{(*)}}$ from B_{s} decays to compare with $R_{D^{(*)}}$ from B decays

$$\mathcal{R}_{D^{(*)}}^{\tau/\mu} \equiv \frac{d\Gamma(B \to D^{(*)}\tau\nu_{\tau})/d_q^2}{d\Gamma(B \to D^{(*)}\mu\nu_{\mu})/d_q^2}$$

- ► While SM prediction shown has small error, value for R_D(*) is a pheno. estimate
- R(D*) 0.5 $\Delta \gamma^2 = 1.0$ contours SM Predictions 0.45 R(D)=0.300(8) HPOCD (2015) 18.211801(2017) R(D)=0.299(11) FNAL/MILC (2015) HCb. FPCP2017 verage R(D*)=0.252(3) S. Faifer et al. (2012) 0.40.35 0.3 0.25 HFLA 0.2 0.2 0.3 0.4 0.5 0.6 R(D)
- ▶ Nonperturbative lattice calculation favor B_s over B decays (higher precision)
- ▶ Only the spectator quark differs: $R_{D_{c}^{(*)}}$ may be a good proxy for $R_{D^{(*)}}$

$|V_{ub}|$ from exclusive semileptonic $B_s \to K \ell \nu$ decay

 \blacktriangleright Conventionally parametrized by (neglecting term $\propto m_\ell^2 f_0^2)$

$$\frac{d\Gamma(B_s \to K\ell\nu)}{dq^2} = \frac{G_F^2}{192\pi^3 M_{B_s}^3} \left[\left(M_{B_s}^2 + M_K^2 - q^2 \right)^2 - 4M_{B_s}^2 M_K^2 \right]^{3/2} \times \left| f_+(q^2) \right|^2 \times \left| V_{ub} \right|^2$$
experiment known nonperturbative input CKM

Nonperturbative input

- ▶ Parametrizes interactions due to the (nonperturbative) strong force
- ▶ Use operator product expansion (OPE) to identify short distance contributions
- ▶ Calculate the flavor changing currents as point-like operators using lattice QCD

\Rightarrow Nonperturbative calculation: lattice QCD

ightarrow Additional challenge $m_b =$ 4.18GeV \sim 1000 imes m_d

 $m_c = 1.28 {
m GeV} \sim 270 imes m_d$

Set-up

- ▶ RBC-UKQCD's 2+1 flavor domain-wall fermion and Iwasaki gauge action ensembles
 - → Three lattice spacings *a* ~ 0.11 fm, 0.08 fm, 0.07 fm; one ensemble with physical pions [PRD 78 (2008) 114509][PRD 83 (2011) 074508][PRD 93 (2016) 074505][JHEP 1712 (2017) 008]
- ► Unitary and partially quenched domain-wall up/down quarks [Kaplan PLB 288 (1992) 342], [Shamir NPB 406 (1993) 90]
- Domain-wall strange quarks at/near the physical value
- ► Charm: Möbius domain-wall fermions optimized for heavy quarks [Boyle et al. JHEP 1604 (2016) 037]
 - \rightarrow Simulate 3 or 2 charm-like masses then extrapolate/interpolate
- ► Effective relativistic heavy quark (RHQ) action for bottom quarks [Christ et al. PRD 76 (2007) 074505], [Lin and Christ PRD 76 (2007) 074506]
 - \rightarrow Builds upon Fermilab approach [El-Khadra et al. PRD 55 (1997) 3933]
 - \rightarrow Allows to tune the three parameters (m_0a , c_P , ζ) nonperturbatively [PRD 86 (2012) 116003]
 - \rightarrow Smooth continuum limit; heavy quark treated to all orders in $(m_b a)^n$

$B_s \rightarrow K \ell \nu$ form factors

▶ Parametrize the hadronic matrix element for the flavor changing vector current V^{μ} in terms of the form factors $f_+(q^2)$ and $f_0(q^2)$

► Calculate 3-point function by

- \rightarrow Inserting a quark source for a "light" propagator at t_0
- \rightarrow Allow it to propagate to t_{sink} , turn it into a sequential source for a b quark
- \rightarrow Use another "light" quark propagating from t_0 and contract both at t

Determining $B_s \rightarrow K \ell \nu$ form factors f_+ and f_0 on the lattice

- ▶ Updating calculation [PRD 91 (2015) 074510] with new values for a^{-1} and RHQ parameters
- ▶ New analysis directly fitting form factors and accounting for excited state contributions
- ▶ On the lattice we prefer using the B_s -meson rest frame and compute

$$f_{\parallel}(E_{\kappa}) = \langle K | V^0 | B_s \rangle / \sqrt{2M_{B_s}}$$
 and $f_{\perp}(E_{\kappa}) p_K^i = \langle K | V^i | B_s \rangle / \sqrt{2M_{B_s}}$

▶ Both are related by

$$\begin{split} f_0(q^2) &= \frac{\sqrt{2M_{B_s}}}{M_{B_s}^2 - M_K^2} \left[(M_{B_s} - E_K) f_{||}(E_K) + (E_K^2 - M_K^2) f_{\perp}(E_K) \right] \\ f_+(q^2) &= \frac{1}{\sqrt{2M_{B_s}}} \left[f_{||}(E_K) + (M_{B_s} - E_K) f_{\perp}(E_K) \right] \end{split}$$

Chiral-continuum extrapolation using SU(2) hard-kaon χ PT

$$f_{\perp}(M_{K}, E_{K}, a^{2}) = \frac{1}{E_{K} + \Delta} c_{\perp}^{(1)} \\ \times \left[1 + \frac{\delta f_{\perp}}{(4\pi f)^{2}} + c_{\perp}^{(2)} \frac{M_{K}^{2}}{\Lambda^{2}} + c_{\perp}^{(3)} \frac{E_{K}}{\Lambda} + c_{\perp}^{(4)} \frac{E_{K}^{2}}{\Lambda^{2}} + c_{\perp}^{(5)} \frac{a^{2}}{\Lambda^{2} a_{32}^{4}} \right]$$

$$f_{\parallel}(M_{K}, E_{K}, a^{2}) = \frac{1}{E_{K} + \Delta} c_{\parallel}^{(1)} \\ \times \left[1 + \frac{\delta f_{\parallel}}{(4\pi f)^{2}} + c_{\parallel}^{(2)} \frac{M_{K}^{2}}{\Lambda^{2}} + c_{\parallel}^{(3)} \frac{E_{K}}{\Lambda} + c_{\parallel}^{(4)} \frac{E_{K}^{2}}{\Lambda^{2}} + c_{\parallel}^{(5)} \frac{a^{2}}{\Lambda^{2} a_{32}^{4}} \right]$$
with δf non-applytic logs of the kaon mass

with δf non-analytic logs of the kaon mass and hard-kaon limit is taken by $M_K/E_K \rightarrow 0$

Estimate systematic errors due to

- Chiral-continuum extrapolation
 - \rightarrow Use alternative fit functions
 - \rightarrow Impose different cuts on the data
- ► Uncertainties of the lattice spacing (a^{-1})
 - \rightarrow Repeat the fit varying a^{-1} by its uncertainty
- ► Uncertainty of the renormalization factors → Estimate effect of higher loop corrections
- Discretization errors and uncertainties of light and heavy quarks

 $B_c \rightarrow K \ell \nu$

- \rightarrow Vary by uncertainty
- \rightarrow Carry out additional simulations to test effects on form factors
- ▶ Finite volume, iso-spin breaking, ...

\Rightarrow full error budget

Graphical error budget (plots from previous analysis!)

- Read off values for "synthetic" data points
 - \rightarrow Use values in the chiral-continuum limit with uncertainties representing the full error budget
 - \rightarrow Chiral-continuum extrapolation performed over range of our data
 - \rightarrow Avoids parametrizing lattice artifacts in kinematic expansion

Kinematical extrapolation (*z*-expansion)

 \blacktriangleright Map q^2 to z with minimized magnitude in the semileptonic region: $|z| \leq 0.146$

Kinematical extrapolation (*z*-expansion)

 \blacktriangleright Map q^2 to z with minimized magnitude in the semileptonic region: $|z| \leq 0.146$

 $B_s \rightarrow D_s \ell \nu$

$|V_{cb}|$ from exclusive semileptonic $B_s \rightarrow D_s \ell \nu$ decay

 \blacktriangleright Conventionally parametrized by (neglecting term $\propto m_\ell^2 f_0^2)$

$$\frac{d\Gamma(B_{s} \to D_{s}\ell\nu)}{dq^{2}} = \frac{G_{F}^{2}}{192\pi^{3}M_{B_{s}}^{3}} \left[\left(M_{B_{s}}^{2} + M_{D_{s}}^{2} - q^{2} \right)^{2} - 4M_{B_{s}}^{2}M_{D_{s}}^{2} \right]^{3/2} \times |f_{+}(q^{2})|^{2} \times |V_{cb}|^{2}$$
experiment known nonperturbative input CKM

Charm extra-/interpolation for $B_s \rightarrow D_s \ell \nu$

- Simulate charm quarks using DWF
 - \rightarrow Similar action as for u, d, s quarks
 - \rightarrow "Fully" relativistic setup simplifies renormalization
 - → Established by calculating $f_{D(s)}$ [Boyle et al. JHEP 1712 (2017) 008]
- Coarse ensembles
 - \rightarrow Linearly extrapolate three charm-like masses
- Medium and fine ensembles
 - \rightarrow Interpolate between two charm-like masses
- Analysis of data at third, finer lattice spacing will help to better estimate uncertainty

Chiral-continuum extrapolation

- ► Account for dependence on
 - \rightarrow charm quark mass
 - \rightarrow lattice spacing
 - \rightarrow light sea-quark mass

$$f(q, a) = rac{lpha_0 + lpha_1 M_{D_s} + lpha_2 a^2 + lpha_3 M_\pi^2}{1 + lpha_4 q^2 / M_{B_s}^2}$$

conclusion

Conclusion

- \blacktriangleright In the final stages to complete $B_s \to K \ell \nu$ and $B_s \to D_s \ell \nu$ form factor calculation
 - \rightarrow As usual, carefully estimating all systematic uncertainties is tedious
 - \rightarrow Can even require additional simulations

- Our lattice calculation also includes
 - $\rightarrow B \rightarrow \pi \ell \nu, \ B \rightarrow \pi \ell^+ \ell^-$
 - $\rightarrow B \rightarrow K^* \ell^+ \ell^-$
 - $\xrightarrow{} B \to D^{(*)} \ell \nu$
 - $\rightarrow B_s \rightarrow K^* \ell^+ \ell^-$
 - $\to B_s \to D_s^* \ell \nu$
 - $\rightarrow B_s \rightarrow \phi \ell^+ \ell^-$

 $\rightarrow \ldots$

Resources and Acknowledgments

USQCD: Ds, Bc, and pi0 cluster (Fermilab), qcd12s cluster (Jlab) RBC qcdcl (RIKEN) and cuth (Columbia U) UK: ARCHER, Cirrus (EPCC) and DiRAC (UKQCD)

2+1 Flavor Domain-Wall Iwasaki ensembles

L $a^{-1}(\text{GeV})$ am_l			am _s	$M_{\pi}({ m MeV})$ # configs.		#sources	
24 24	1.784 1.784	0.005 0.010	0.040 0.040	338 434	1636 1419	1 1	[PRD 78 (2008) 114509] [PRD 78 (2008) 114509]
32 32 32	2.383 2.383 2.383	0.004 0.006 0.008	0.030 0.030 0.030	301 362 411	628 889 544	2 2 2	[PRD 83 (2011) 074508] [PRD 83 (2011) 074508] [PRD 83 (2011) 074508]
48 64	1.730 2.359	0.00078 0.000678	0.0362 0.02661	139 139	40	81/1*	[PRD 93 (2016) 074505] [PRD 93 (2016) 074505]
48	2.774	0.002144	0.02144	234	70	24	[arXiv:1701.02644]

* All mode averaging: 81 "sloppy" and 1 "exact" solve [Blum et al. PRD 88 (2012) 094503]
▶ Lattice spacing determined from combined analysis [Blum et al. PRD 93 (2016) 074505]
▶ a: ~ 0.11 fm, ~ 0.08 fm, ~ 0.07 fm

Flavor Lattice Averaging Group

Lattice determinations of $B_s \to K \ell \nu$ form factors

Lattice determinations of $|V_{ub}|$ and $|V_{cb}|$

