$B_s^0 o \{D_s, K\}$ form factors from lattice QCD

Oliver Witzel (RBC-UKQCD collaborations)

Implications of LHCb measurements and future prospects CERN, November 09, 2017

RBC- and UKQCD collaborations (Lattice 2017)

BNL/RBRC

Mattia Bruno Tomomi Ishikawa Taku Izubuchi Luchang Jin Chulwoo Jung Christoph Lehner Meifeng Lin Hiroshi Ohki Shigemi Ohta (KEK) Amarjit Soni Sergey Syritsyn

U Connecticut

Tom Blum Dan Hoying Cheng Tu

Columbia U

Ziyuan Bai Norman Christ Duo Guo Christopher Kelly Bob Mawhinney David Murphy Masaaki Tomii Jiqun Tu Bigeng Wang Tianle Wang

FZ Jülich Taichi Kawanai

Peking U Xu Feng

U Edinburgh

Peter Boyle Guido Cossu Luigi Del Debbio Richard Kenway Julia Kettle Ava Khamseh Brian Pendleton Antonin Portelli Tobias Tsang Oliver Witzel Azusa Yamaguchi

KEK

Julien Frison

York U (Toronto) Renwick Hudspith

U Southampton

Jonathan Flynn Vera Gülpers James Harrison Andreas Jüttner Andrew Lawson Edwin Lizarazo Chris Sachrajda

U Liverpool

Nicolas Garron

RBC- and UKQCD collaborations (Lattice 2017)

BNL/RBRC

Mattia Bruno Tomomi Ishikawa Taku Izubuchi Luchang Jin Chulwoo Jung Christoph Lehner Meifeng Lin Hiroshi Ohki Shigemi Ohta (KEK) Amarjit Soni Sergey Syritsyn

U Connecticut

Tom Blum Dan Hoying Cheng Tu

Columbia U

Ziyuan Bai Norman Christ Duo Guo Christopher Kelly Bob Mawhinney David Murphy Masaaki Tomii Jiqun Tu Bigeng Wang Tianle Wang

FZ Jülich Taichi Kawanai

Peking U Xu Feng

U Edinburgh

Peter Boyle Guido Cossu Luigi Del Debbio Richard Kenway Julia Kettle Ava Khamseh Brian Pendleton Antonin Portelli Tobias Tsang **Oliver Witzel** Azusa Yamaguchi

KEK

Julien Frison

York U (Toronto) Renwick Hudspith

U Southampton Jonathan Flynn Vera Gülpers James Harrison Andreas Jüttner Andrew Lawson Edwin Lizarazo Chris Sachrajda

U Liverpool

Nicolas Garron

introduction

Why B_s meson decays?

- ► Alternative, tree-level determination of |V_{cb}| and |V_{ub}| from B_s → D_sℓν and B_s → Kℓν
 - \rightarrow Commonly used $B \rightarrow \pi \ell \nu$ and $B \rightarrow D^{(*)} \ell \nu$
 - → Longstanding 2 3 σ discrepancy between exclusive ($B \rightarrow \pi \ell \nu$) and inclusive ($B \rightarrow X_u \ell \nu$)
 - $\rightarrow B \rightarrow \tau \nu$ has larger error
 - → Alternative, exclusive $(\Lambda_b \rightarrow p \ell \nu)$ determination [Detmold, Lehner, Meinel, PRD92 (2015) 034503]
- ▶ Test of lepton flavor violation in B_s decays (R_{D_s}, R_K)
- ▶ Higher precision in nonperturbative lattice calculation

[http://ckmfitter.in2p3.fr]

$|V_{ub}|$ from exclusive semileptonic $B_s \rightarrow K \ell \nu$ decay

 \blacktriangleright Conventionally parametrized by (neglecting term $\propto m_\ell^2 f_0^2)$

$$\frac{d\Gamma(B_s \to K\ell\nu)}{dq^2} = \frac{G_F^2}{192\pi^3 M_{B_s}^3} \left[\left(M_{B_s}^2 + M_K^2 - q^2 \right)^2 - 4M_{B_s}^2 M_K^2 \right]^{3/2} \times \left| f_+(q^2) \right|^2 \times \left| V_{ub} \right|^2$$
experiment known nonperturbative input CKM

Nonperturbative input

- ▶ Parametrizes interactions due to the (nonperturbative) strong force
- ▶ Use operator product expansion (OPE) to identify short distance
- ▶ Calculate the flavor changing currents as point-like operators using lattice QCD

FI AG

Lattice QCD

- Wick rotation of Minkowski to Euclidean time
- ▶ Discretize space-time on a 4-d hypercube with extent L³ × T and lattice spacing a [fm] → 1/a is the cutoff [GeV]
- Quark fields $\psi(x)$ live on the lattice sites, gauge fields $U_{\mu}(x)$ on the links
- ► Numerically solve path integral using Markov chain Monte Carlo simulations with importance sampling (~ supercomputers)
- ▶ Different discretizations for fermion (Wilson, Staggered, DWF, ...) and gauge actions (Wilson plaquette, Iwasaki, Symanzik, ...)
- ▶ Results are expected to agree in the continuum limit where lattice artifacts are removed (~ see FLAG compilations)

Typical workflow of a lattice calculation

- 1) Generate gauge field configurations containing the QCD vacuum with "light" sea-quarks and gluons
 - \rightsquigarrow Degenerate u/d and s quark: dynamical 2+1 flavor
 - \leadsto s quarks close to physical mass
 - $\leadsto u/d$ quarks chirally extrapolated, now simulations at physical mass
 - \leadsto Need experimental inputs to set quark masses, gauge coupling, θ
- 2) Carry out valence quark measurements on gauge field configurations
- Combine measurements on different ensembles, extrapolate to the continuum and physical quark masses
- 4) Match lattice calculation to $\overline{\text{MS}}$ scheme (renormalization)
- 5) Account for systematic effects

Additional challenge: *b* quark

- ▶ Masses: *b*-quark 4.18 GeV whereas *d*-quark 4.7 MeV
 - \Rightarrow *b*-quark \sim 1000 times heavy than *d*-quark
 - ⇒ Mass of *b*-quark larger than cutoff (a^{-1})
- ► Simulate *b*-quark with effective action
 - \rightarrow Requires renormalization of mixed action
 - \rightarrow Fermilab-action/RHQ, NRQCD, HQET
- Extrapolate to physical *b*-quark
 - \rightarrow allows for full nonperturbative renormalization
 - \rightarrow ETMC ratio method, heavy HISQ, heavy DWF
- ▶ Similar considerations for *c*-quark (1.28 GeV)

systematic uncertainty to be accounted for

Set-up

- ► RBC-UKQCD's 2+1 flavor domain-wall fermion and Iwasaki gauge action ensembles
 - → Three lattice spacings *a* ~ 0.11 fm, 0.08 fm, 0.07 fm; one ensemble with physical pions [PRD 78 (2008) 114509][PRD 83 (2011) 074508][PRD 93 (2016) 074505][arXiv:1701.02644]
- ► Unitary and partially quenched domain-wall up/down quarks [Kaplan PLB 288 (1992) 342], [Shamir NPB 406 (1993) 90]
- ▶ Domain-wall strange quarks at/near the physical value
- ► Charm: Möbius domain-wall fermions optimized for heavy quarks [Boyle et al. JHEP 1604 (2016) 037]
 - \rightarrow Simulate 3 or 2 charm-like masses then extrapolate/interpolate
- ► Effective relativistic heavy quark (RHQ) action for bottom quarks [Christ et al. PRD 76 (2007) 074505], [Lin and Christ PRD 76 (2007) 074506]
 - \rightarrow Builds upon Fermilab approach [El-Khadra et al. PRD 55 (1997) 3933]
 - \rightarrow Allows to tune the three parameters (m_0a , c_P , ζ) nonperturbatively [PRD 86 (2012) 116003]
 - \rightarrow Smooth continuum limit; heavy quark treated to all orders in $(m_b a)^n$

$B_s \rightarrow K \ell \nu$ form factors

▶ Parametrize the hadronic matrix element for the flavor changing vector current V^{μ} in terms of the form factors $f_+(q^2)$ and $f_0(q^2)$

► Calculate 3-point function by

- \rightarrow Inserting a quark source for a "light" propagator at t_0
- \rightarrow Allow it to propagate to t_{sink} , turn it into a sequential source for a b quark
- \rightarrow Use another "light" quark propagating from t_0 and contract both at t

Determining $B_s \rightarrow K \ell \nu$ form factors f_+ and f_0 on the lattice

▶ Updating calculation [PRD 91 (2015) 074510] with new values for a^{-1} and RHQ parameters

▶ On the lattice we prefer using the B_s -meson rest frame and compute

$$f_{\parallel}(E_{K}) = \langle K | V^{0} | B_{s} \rangle / \sqrt{2M_{B_{s}}}$$
 and $f_{\perp}(E_{K}) p_{K}^{i} = \langle K | V^{i} | B_{s} \rangle / \sqrt{2M_{B_{s}}}$

▶ Both are related by

$$\begin{split} f_0(q^2) &= \frac{\sqrt{2M_{B_s}}}{M_{B_s}^2 - M_K^2} \left[(M_{B_s} - E_K) f_{\parallel}(E_K) + (E_K^2 - M_K^2) f_{\perp}(E_K) \right] \\ f_+(q^2) &= \frac{1}{\sqrt{2M_{B_s}}} \left[f_{\parallel}(E_K) + (M_{B_s} - E_K) f_{\perp}(E_K) \right] \end{split}$$

⇒ Values of the form factors on one ensemble i.e. $f = f(a^{-1}, am_{\ell}, am_{s}, ...)$

 \rightarrow Kinematic range determined by largest momentum

Chiral-continuum extrapolation using SU(2) hard-kaon χ PT

$$f_{\parallel}(M_{\mathcal{K}}, \mathcal{E}_{\mathcal{K}}, a^{2}) = \frac{1}{E_{\mathcal{K}} + \Delta} c_{\parallel}^{(1)} \left[1 + \left(\frac{\delta f_{\parallel}}{(4\pi f)^{2}} + c_{\parallel}^{(2)} \frac{M_{\mathcal{K}}^{2}}{\Lambda^{2}} + c_{\parallel}^{(3)} \frac{E_{\mathcal{K}}}{\Lambda} + c_{\parallel}^{(4)} \frac{E_{\mathcal{K}}^{2}}{\Lambda^{2}} + c_{\parallel}^{(5)} \frac{a^{2}}{\Lambda^{2} a_{32}^{4}} \right) \right]$$

$$f_{\perp}(M_{K}, E_{K}, a^{2}) = \frac{1}{E_{K} + \Delta} c_{\perp}^{(1)} \left[1 + \left(\frac{\delta f_{\perp}}{(4\pi f)^{2}} + c_{\perp}^{(2)} \frac{M_{K}^{2}}{\Lambda^{2}} + c_{\perp}^{(3)} \frac{E_{K}}{\Lambda} + c_{\perp}^{(4)} \frac{E_{K}^{2}}{\Lambda^{2}} + c_{\perp}^{(5)} \frac{a^{2}}{\Lambda^{2} a_{32}^{4}} \right) \right]$$

with δf non-analytic logs of the kaon mass and hard-kaon limit is taken by $M_{K}/E_{K}
ightarrow 0$

Estimate systematic errors due to

- Chiral-continuum extrapolation
 - \rightarrow Use alternative fit functions
 - \rightarrow Impose different cuts on the data
- Uncertainties of the lattice spacing (a^{-1})
 - \rightarrow Repeat the fit varying a^{-1} by its uncertainty
- ► Uncertainty of the renormalization factors → Estimate effect of higher loop corrections
- Discretization errors and uncertainties of light and heavy quarks
 - \rightarrow Vary by uncertainty
 - \rightarrow Carry out additional simulations to test effects on form factors
- ▶ Finite volume, iso-spin breaking, ...

\Rightarrow full error budget

Graphical error budget (plots from previous analysis!)

- ▶ Read off values for "synthetic" data points
 - \rightarrow Use values in the chiral-continuum limit with uncertainties representing the full error budget
 - \rightarrow Chiral-continuum extrapolation performed over range of our data
 - \rightarrow Avoids parametrizing lattice artifacts in kinematic expansion

Kinematical extrapolation (*z*-expansion)

▶ Map q^2 to z with minimized magnitude in the semileptonic region: $|z| \le 0.146$

Kinematical extrapolation (*z*-expansion)

▶ Map q^2 to z with minimized magnitude in the semileptonic region: $|z| \le 0.146$

 $B_s \rightarrow D_s \ell \nu$

$|V_{cb}|$ from exclusive semileptonic $B_s \rightarrow D_s \ell \nu$ decay

 \blacktriangleright Conventionally parametrized by (neglecting term $\propto m_\ell^2 f_0^2)$

$$\frac{d\Gamma(B_{s} \to D_{s}\ell\nu)}{dq^{2}} = \frac{G_{F}^{2}}{192\pi^{3}M_{B_{s}}^{3}} \left[\left(M_{B_{s}}^{2} + M_{D_{s}}^{2} - q^{2} \right)^{2} - 4M_{B_{s}}^{2}M_{D_{s}}^{2} \right]^{3/2} \times |f_{+}(q^{2})|^{2} \times |V_{cb}|^{2}$$
experiment known nonperturbative input CKM

Lattice results for form factors f_{\parallel} and f_{\perp} for $B_s \rightarrow D_s \ell \nu$

$$R^{B_s o D_s}_{\mu}(t, t_{
m sink}) = rac{C^{B_s o D_s}_{3,\mu}(t, t_{
m sink})}{C^{D_s}_2(t)C^{B_s}_2(t_{
m sink} - t)} \sqrt{rac{4M_{B_s}E_{D_s}}{e^{-E_{D_s}t}e^{-M_{B_s}(t_{
m sink} - t)}}}$$

Charm extra-/interpolation for $B_s \rightarrow D_s \ell \nu$

Charm extra-/interpolation for $B_s \rightarrow D_s \ell \nu$

- Simulate charm quarks using DWF
 - \rightarrow Similar action as for u, d, s quarks
 - \rightarrow "Fully" relativistic setup simplifies renormalization
 - \rightarrow Established by calculating $f_{D_{(s)}}$ [Boyle et al. arXiv:1701.02644]_{0.55}
- Coarse ensembles
 - \rightarrow Linearly extrapolate three charm-like masses
- Medium and fine ensembles
 - \rightarrow Interpolate between two charm-like masses
- Analysis of data at third, finer lattice spacing will help to better estimate uncertainty

Chiral-continuum extrapolation and first z-expansion

 \blacktriangleright No light valence quarks, no need for $\chi {\rm PT}$

f(q, a) =	$c_0 + c_1 (\Lambda_{\text{QCD}} a)^2$		
	$\overline{1+c_2(q/M_{B_c})^2}$		

- Based on incomplete/preliminary error budget
- Expect improvement from additional data

Flavor Lattice Averaging Group

Lattice determinations of $B_s \rightarrow K \ell \nu$ form factors

- \rightarrow Different actions
- \rightarrow Different gauge field ensembles \Rightarrow Entirely uncorrelated
- Combined analysis by FLAG

[FLAG2016]

Lattice determinations of $|V_{ub}|$ and $|V_{cb}|$

24 / 26

[FLAG2016]

conclusion

Conclusion

- \blacktriangleright In the final stages to complete $B_s \to K \ell \nu$ and $B_s \to D_s \ell \nu$ form factor calculation
 - \rightarrow As usual, carefully estimating all systematic uncertainties is tedious
 - \rightarrow Even requires additional simulations (currently running)
 - \rightarrow Additional data at finer lattice spacing ready to be included
- Our lattice calculation also includes

 $\rightarrow \ldots$

Resources and Acknowledgments

USQCD: Ds, Bc, and pi0 cluster (Fermilab), qcd12s cluster (Jlab) RBC qcdcl (RIKEN) and cuth (Columbia U) UK: ARCHER, Cirrus (EPCC) and DiRAC (UKQCD)

2+1 Flavor Domain-Wall Iwasaki ensembles

Lá	L $a^{-1}(\text{GeV})$ am_l am_s		$M_{\pi}(MeV)$ # configs.		#sources		
24 24	1.784 1.784	0.005 0.010	0.040 0.040	338 434	1636 1419	1 1	[PRD 78 (2008) 114509] [PRD 78 (2008) 114509]
32 32 32	2.383 2.383 2.383	0.004 0.006 0.008	0.030 0.030 0.030	301 362 411	628 889 544	2 2 2	[PRD 83 (2011) 074508] [PRD 83 (2011) 074508] [PRD 83 (2011) 074508]
48 64	1.730 2.359	0.00078 0.000678	0.0362 0.02661	139 139	40	81/1*	[PRD 93 (2016) 074505] [PRD 93 (2016) 074505]
48	2.774	0.002144	0.02144	234	70	24	[arXiv:1701.02644]

* All mode averaging: 81 "sloppy" and 1 "exact" solve [Blum et al. PRD 88 (2012) 094503]
▶ Lattice spacing determined from combined analysis [Blum et al. PRD 93 (2016) 074505]
▶ a: ~ 0.11 fm, ~ 0.08 fm, ~ 0.07 fm