Form factors from lattice QCD

Oliver Witzel

Implications of LHCb measurements and future prospects CERN, Geneva, Switzerland · October 17, 2019

Lattice QCD

lattice QCD	$B_S \to K \ell \nu$	$B_s \rightarrow D_s \ell \nu$	$B \rightarrow D^* \ell \nu$	summary
000	000000000	0000	000000	00

Lattice calculation

- \blacktriangleright Wick-rotate to Euclidean time $t \rightarrow i \tau$
- ▶ Discretize space-time and set up a hypercube of finite extent $L^3 \times T$ and spacing *a*
- Use path integral formalism

$$\langle \mathcal{O} \rangle_{\mathcal{E}} = \frac{1}{Z} \int \mathcal{D}[\psi, \overline{\psi}] \, \mathcal{D}[U] \, \mathcal{O}[\psi, \overline{\psi}, U] \, e^{-S_{\mathcal{E}}[\psi, \overline{\psi}, U]}$$

- \Rightarrow Large but finite dimensional path integral
- Finite volume of length $L \rightarrow IR$ regulator
 - \rightarrow Study physics in a finite box of volume $(aL)^3$
 - \rightarrow Strongly prefer decays with 1 (QCD-stable) hadronic final state (narrow width approximation)
- \blacktriangleright Finite lattice spacing $\textbf{\textit{a}} \rightarrow \text{UV}$ regulator
 - \rightarrow Quark masses need to obey am < 1

Simulating charm and bottom (schematic)

 $a^{-1} > 1.5 \,\,\mathrm{GeV}$

charm: RHQ; extrapolations of fully relativistic actions (?) bottom: HQET, NRQCD, RHQ

 $a^{-1} > 2.2 \,\,\mathrm{GeV}$

charm: fully relativistic action bottom: (guided) extrapolation of fully relativistic action

 $a^{-1} > 4.6 \,\,{
m GeV}$

bottom: fully relativistic action

HQET: static limit, relatively noisy

NRQCD: non-relativistic QCD, no continuum limit

RHQ or Fermilab: relativistic heavy quark action, complicated discretization errors (heavy) HISQ or (heavy) MDWF: fully relativistic, clean nonperturbative renormalization

lattice QCD	$B_s \rightarrow K \ell \nu$	$B_s \rightarrow D_s \ell \nu$	$B \rightarrow D^* \ell \nu$	summary
000	00000000	0000	000000	00

 $|V_{ub}|$ from exclusive semileptonic $B_s \rightarrow K \ell \nu$ decay

• Conventionally parametrized by $(B_s \text{ meson at rest})$

$$\frac{d\Gamma(B_s \to K\ell\nu)}{dq^2} = \frac{G_F^2 |V_{ub}|^2}{24\pi^3} \frac{(q^2 - m_\ell^2)^2 \sqrt{E_K^2 - M_K^2}}{q^4 M_{B_s}^2}$$
experiment CKM known
$$\times \left[\left(1 + \frac{m_\ell^2}{2q^2} \right) M_{B_s}^2 (E_K^2 - M_K^2) |f_+(q^2)|^2 + \frac{3m_\ell^2}{8q^2} (M_{B_s}^2 - M_K^2)^2 |f_0(q^2)|^2 \right]$$
represent the time input

nonperturbative input

lattice QCD	$B_S \rightarrow K \ell \nu$	$B_s \rightarrow D_s \ell \nu$	$B \rightarrow D^* \ell \nu$	summary
000	00000000	0000	000000	00

$|V_{ub}|$ from exclusive semileptonic $B_s \to K \ell \nu$ decay

• Conventionally parametrized by $(B_s \text{ meson at rest})$

$$\frac{d\Gamma(B_s \to K\ell\nu)}{dq^2} = \frac{G_F^2 |V_{ub}|^2}{24\pi^3} \frac{(q^2 - m_\ell^2)^2 \sqrt{E_K^2 - M_K^2}}{q^4 M_{B_s}^2}$$
experiment CKM known
$$\times \left[\left(1 + \frac{m_\ell^2}{2q^2} \right) M_{B_s}^2 (E_K^2 - M_K^2) |f_+(q^2)|^2 + \frac{3m_\ell^2}{8q^2} (M_{B_s}^2 - M_K^2)^2 |f_0(q^2)|^2 \right]$$

▶ $f_+(q^2)$ and $f_0(q^2)$

- \rightarrow Parametrizes interactions due to the (nonperturbative) strong force
- \rightarrow Use operator product expansion (OPE) to identify short distance contributions
- \rightarrow Calculate the flavor changing currents as point-like operators using lattice QCD

nonperturbative input

lattice QCD	$B_s \rightarrow K \ell \nu$	$B_S \rightarrow D_S \ell \nu$	$B \rightarrow D^* \ell \nu$	summary
000	00000000	0000	000000	00

$|V_{ub}|$ from exclusive semileptonic $B_s \to K \ell \nu$ decay

▶ Compared to $B \rightarrow \pi \ell \nu$ only spectator quark differs

- \rightarrow Lattice QCD prefers s quark over u quark: statistically more precise, computationally cheaper
- $\rightarrow B$ factories run mostly at $\Upsilon(4s)$ threshold $\Rightarrow B$ mesons
- \rightarrow LHC collisions create many B and B_s mesons which decay \Rightarrow LHCb

lattice QCD	$B_s \to K \ell \nu$	$B_S \rightarrow D_S \ell \nu$	$B \rightarrow D^* \ell \nu$	summary
000	00000000	0000	000000	00

$B_s \rightarrow K \ell \nu$ form factors

▶ Parametrize the hadronic matrix element for the flavor changing vector current V^{μ} in terms of the form factors $f_+(q^2)$ and $f_0(q^2)$

► Calculate 3-point function by

- \rightarrow Inserting a quark source for a strange quark propagator at t_0
- \rightarrow Allow it to propagate to t_{sink} , turn it into a sequential source for a b quark
- \rightarrow Use a "light" quark propagating from t_0 and contract both at t with $t_0 \leq t \leq t_{\textit{sink}}$

lattice QCD	$B_S \rightarrow K \ell \nu$	$B_S \rightarrow D_S \ell \nu$	$B \rightarrow D^* \ell \nu$	summary
000	00000000	0000	000000	00

$B_s \rightarrow K \ell \nu$ form factors

▶ Parametrize the hadronic matrix element for the flavor changing vector current V^{μ} in terms of the form factors $f_+(q^2)$ and $f_0(q^2)$

$$\langle K | V^{\mu} | B_s
angle = f_+(q^2) \left(p^{\mu}_{B_s} + p^{\mu}_K - rac{M^2_{B_s} - M^2_K}{q^2} q^{\mu}
ight) + f_0(q^2) rac{M^2_{B_s} - M^2_K}{q^2} q^{\mu}$$

► On the lattice we prefer to compute

 $f_{\parallel}(E_{\kappa}) = \langle K | V^0 | B_s \rangle / \sqrt{2M_{B_s}}$ and $f_{\perp}(E_{\kappa}) p_K^i = \langle K | V^i | B_s \rangle / \sqrt{2M_{B_s}}$

▶ Both are related by

$$f_{0}(q^{2}) = \frac{\sqrt{2M_{B_{s}}}}{M_{B_{s}}^{2} - M_{K}^{2}} \left[(M_{B_{s}} - E_{K}) f_{\parallel}(E_{K}) + (E_{K}^{2} - M_{K}^{2}) f_{\perp}(E_{K}) \right]$$
$$f_{+}(q^{2}) = \frac{1}{\sqrt{2M_{B_{s}}}} \left[f_{\parallel}(E_{K}) + (M_{B_{s}} - E_{K}) f_{\perp}(E_{K}) \right]$$

lattice QCD	$B_S \rightarrow K \ell \nu$	$B_s \rightarrow D_s \ell \nu$	$B \rightarrow D^* \ell \nu$	summary
000	00000000	0000	000000	00

$B_s \rightarrow K \ell \nu$ form factors: F1 ensemble

 \blacktriangleright Comparison of fit to the ground state only with fit including one excited state term for K and B_s

Chiral-continuum extrapolation using SU(2) hard-kaon χ PT

▶ Updating calculation [Flynn et al. PRD 91 (2015) 074510] with improved values for a^{-1} and RHQ parameters

 \blacktriangleright δf non-analytic logs of the kaon mass and hard-kaon limit is taken by $M_{K}/E_{K}
ightarrow 0$

lattice QCD	$B_s \rightarrow K \ell \nu$	$B_s \rightarrow D_s \ell \nu$	$B \rightarrow D^* \ell \nu$	summary
000	000000000	0000	000000	00

Estimate systematic errors due to

- Chiral-continuum extrapolation
 - \rightarrow Use alternative fit functions, vary pole mass, etc.
 - \rightarrow Impose different cuts on the data
- Discretization errors of light and heavy quarks
 - \rightarrow Estimate via power-counting
- Uncertainty of the renormalization factors
 - \rightarrow Estimate effect of higher loop corrections
- ▶ Finite volume, iso-spin breaking, ...
- Uncertainty due to RHQ parameters and lattice spacing (a^{-1})
 - \rightarrow Carry out additional simulations to test effects on form factors
- Uncertainty of strange quark mass
 - \rightarrow Repeat simulation with different valence quark mass

\Rightarrow full error budget

lattice QCD	$B_s \rightarrow K \ell \nu$	$B_S \rightarrow D_S \ell \nu$	$B \rightarrow D^* \ell \nu$
000	0000000000	0000	000000

PRELIMINARY error budget $B_s \rightarrow K \ell \nu$

$$\bullet \, \delta f = \left| f^{\text{variation}} - f^{\text{central}} \right| / f^{\text{central}}$$

summarv

PRELIMINARY error budget $B_s \rightarrow K \ell \nu$

▶ "Other": 3% placeholder to cover higher order corrections, lattice spacing, finite volume, ...

lattice QCD $B_S \rightarrow K\ell\nu$ $B_S \rightarrow D_S\ell\nu$ 00000000000000000

 $B \rightarrow D^* \ell \nu$ 000000

Kinematical extrapolation (z-expansion)

▶ Map q^2 to z with minimized magnitude in the semi-leptonic region: $|z| \le 0.146$

$$z(q^2,t_0)=rac{\sqrt{1-q^2/t_+}-\sqrt{1-t_0/t_+}}{\sqrt{1-q^2/t_+}+\sqrt{1-t_0/t_+}}$$
 with

$$t_{\pm} = (M_B \pm M_{\pi})^2 \ t_0 \equiv t_{
m opt} = (M_B + M_{\pi})(\sqrt{M_B} - \sqrt{M_{\pi}})^2$$

[Boyd, Grinstein, Lebed, PRL 74 (1995) 4603] [Bourrely, Caprini, Lellouch, PRD 79 (2009) 013008]

- **•** Express f_+ as convergent power series
- f_0 is analytic, except for B^* pole
- ▶ BCL with poles $M_+ = B^* = 5.33$ GeV and $M_0 = 5.63$ GeV
- Exploit kinematic constraint $f_+ = f_0 \Big|_{a^2=0}$
- \rightarrow Include HQ power counting to constrain size of f_+ coefficients
- ▶ Systematic errors subject to changes!

summarv

lattice QCD $B_S \rightarrow K\ell\nu$ $B_S \rightarrow D_S\ell\nu$ 00000000000000000

 $B \rightarrow D^* \ell \nu$ 000000

Kinematical extrapolation (z-expansion)

▶ Map q^2 to z with minimized magnitude in the semi-leptonic region: $|z| \le 0.146$

$$z(q^2, t_0) = rac{\sqrt{1-q^2/t_+} - \sqrt{1-t_0/t_+}}{\sqrt{1-q^2/t_+} + \sqrt{1-t_0/t_+}} \quad ext{with}$$

$$t_{\pm} = (M_B \pm M_{\pi})^2 \ t_0 \equiv t_{
m opt} = (M_B + M_{\pi})(\sqrt{M_B} - \sqrt{M_{\pi}})^2$$

[Boyd, Grinstein, Lebed, PRL 74 (1995) 4603] [Bourrely, Caprini, Lellouch, PRD 79 (2009) 013008]

- ▶ Allows to compare shape of form factors
 - → Obtained by other lattice calculations [Bouchard et al. PRD 90 (2014) 054506] [Bazavov et al. arXiv:1901.02561]
 - \rightarrow Predicted by QCD sum rules and alike
- ► Combination with experiment leads to the overall normalization: |V_{ub}|
- ► Systematic errors subject to changes!

summarv

lattice QCD	$B_{S} \rightarrow K \ell \nu$	$B_S \rightarrow D_S \ell \nu$	$B \rightarrow D^* \ell \nu$	summary
000	000000000	0000	000000	00

 $B_s \to K \ell \nu$

▶ HPQCD, RBC-UKQCD, ALPHA

[Bouchard et al. PRD90(2014)054506] [Flynn et al. PRD91(2015)074510] [Bahr et al. PLB757(2016)473]

▶ New 2019: Fermilab/MILC [Bazavov et al. PRD100(2019)034501]

lattice QCD	$B_S \rightarrow K \ell \nu$	$B_s \rightarrow D_s \ell \nu$	$B \rightarrow D^* \ell \nu$	summary
000	00000000	0000	000000	00

Phenomenological predictions

 \blacktriangleright Predict SM differential branching fractions using $|V_{ub}|$ as input for lepton = μ or au

[Flynn et al. PRD 91 (2015) 074510]

lattice QCD	$B_s \to K \ell \nu$	$B_s \rightarrow D_s \ell \nu$	$B \rightarrow D^* \ell \nu$	summary
000	00000000	0000	000000	00

Phenomenological predictions

- \blacktriangleright Predict SM differential branching fractions using $|V_{ub}|$ as input for lepton $= \mu$ or au
- ▶ Predict ratio of branching fractions → LFUV

lattice QCD	$B_S \rightarrow K \ell \nu$	$B_s \rightarrow D_s \ell \nu$	$B \rightarrow D^* \ell \nu$	summary
000	00000000	0000	000000	00

Phenomenological predictions

- ▶ Predict SM differential branching fractions using $|V_{ub}|$ as input for lepton = μ or τ
- ▶ Predict ratio of branching fractions → LFUV

• Predict forward-backward asymmetries using $|V_{ub}|$ as input for lepton = μ or τ

 $B_s \rightarrow D_s \ell \nu$

lattice QCD	$B_s \rightarrow K \ell \nu$	$B_s \rightarrow D_s \ell \nu$	$B \rightarrow D^* \ell \nu$	summary
000	000000000	0000	000000	00

 $|V_{cb}|$ from exclusive semileptonic $B_s \rightarrow D_s \ell \nu$ decay

$$B_{s} = \frac{\overline{b}}{\overline{c}} D_{s}$$

$$q^{2} = M_{B_{s}}^{2} + M_{D_{s}}^{2} - 2M_{B_{s}}E_{D_{s}}$$

• Conventionally parametrized by $(B_s \text{ meson at rest})$

Accommodate charm quarks

$$\begin{aligned} \frac{d\Gamma(B_s \to D_s \ell \nu)}{dq^2} &= \frac{G_F^2 |V_{ub}|^2}{24\pi^3} \frac{(q^2 - m_\ell^2)^2 \sqrt{E_{D_s}^2 - M_{D_s}^2}}{q^4 M_{B_s}^2} \\ & \text{experiment} \quad \text{CKM} \\ \times \left[\left(1 + \frac{m_\ell^2}{2q^2} \right) M_{B_s}^2 (E_{D_s}^2 - M_{D_s}^2) |f_+(q^2)|^2 + \frac{3m_\ell^2}{8q^2} (M_{B_s}^2 - M_{D_s}^2)^2 |f_0(q^2)|^2 \right] \\ & \text{nonperturbative input} \end{aligned}$$

lattice QCD	$B_s \rightarrow K \ell \nu$	$B_s \rightarrow D_s \ell \nu$	$B \rightarrow D^* \ell \nu$	summary
000	000000000	0000	000000	00

 $B_s
ightarrow D_s \ell
u$: HPQCD 2019 [McLean et al. arXiv:1906.00701]

▶ Gauge fields: 2+1+1 flavor HISQ ensembles generated by MILC

▶ u, d, s, c valence HISQ; bottom: "heavy" HISQ \rightarrow fully nonperturbative renormalization

 \rightarrow Simulate array of "lighter" b-quarks and extrapolate

 \rightarrow Cover full q^2 range using twisted BC

- $B_s
 ightarrow D_s \ell
 u$: HPQCD 2019 [McLean et al. arXiv:1906.00701]
 - ▶ Gauge fields: 2+1+1 flavor HISQ ensembles generated by MILC
 - ▶ *u*, *d*, *s*, *c* valence HISQ; bottom: "heavy" HISQ
 - \rightarrow Simulate array of "lighter" *b*-quarks and extrapolate
 - \rightarrow Cover full q^2 range using twisted BC

 $B \to D^* \ell \nu$

lattice QCD	$B_S \rightarrow K \ell \nu$	$B_S \rightarrow D_S \ell \nu$	$B \rightarrow D^* \ell \nu$	summary
000	000000000	0000	00000	00

$B \rightarrow D^* \ell \nu$ form factors

▶ Vector final state with narrow width approximation

$$\begin{split} \langle D^*(k,\lambda)|\bar{c}\gamma^{\mu}b|B(p)\rangle =& f_V \frac{2i\epsilon^{\mu\nu\rho\sigma}\varepsilon^*_{\nu}k_{\rho}p_{\sigma}}{M_B + M_D^*} \\ \langle D^*(k,\lambda)|\bar{c}\gamma^{\mu}\gamma_5b|B(p)\rangle =& f_{A_0}(q^2)\frac{2M_{D^*}\varepsilon^*\cdot q}{q^2}q^{\mu} \\ &+ f_{A_1}(q^2)(M_B + M_{D^*})\left[\varepsilon^{*\mu} - \frac{\varepsilon^*\cdot q}{q^2}q^{\mu}\right] \\ &- f_{A_2}(q^2)\frac{\varepsilon^*\cdot q}{M_B + M_{D^*}}\left[k^{\mu} + p^{\mu} - \frac{M_B^2 - M_{D^*}^2}{q^2}q^{\mu}\right] \end{split}$$

▶ Commonly the HQET variable $w = v \cdot v' > 1$ is used with $v = p/M_B$ and $v' = k/M_{D^*}$

attice QC	D	В <u>е</u> 0	$5 \rightarrow K\ell i$	ν 000	0					$B_s \rightarrow 0000$	$D_s \ell \nu$	$B ightarrow D^* \ell u$	summai 00
B –	$ \rightarrow D^{(*)}_{(s)} \ell \nu $ Still only results	s at	t zerc	o re	eco	il [FLA	\G 2	2019	1			
	Collaboration	Ref.	N_f	Public	Contin. Mar	diral etta	finite Strapolation	top tolume	heart, mali alight	w = 1 for	rm factor / ratio	▶ New 2019: HPQCD $B_s \rightarrow D_s^* \ell$ at zero recoil [McLean et al. PRD99(2019)114512]	ν
=	HPQCD 15, HPQCD 17 [614, 6 FNAL/MILC 15C [4 Atoui 13 [4	516] 513] 510]	2+1 2+1 2	A A A	∘ ★ ★	0 0 0	∘ ★ ★	0	< < <	$ \begin{array}{l} \mathcal{G}^{B \to D}(1) \\ \mathcal{G}^{B \to D}(1) \\ \mathcal{G}^{B \to D}(1) \end{array} $	$1.035(40) \\ 1.054(4)(8) \\ 1.033(95)$	$h_{A_1}^*(1)$ (HISQ,HPQCD)	
-	HPQCD 15, HPQCD 17 [614, 4 Atoui 13 [4	516] 510]	$^{2+1}_{2}$	A A	∘ ★	0 0	∘ ★	0	< ✓	$\mathcal{G}^{B_s \to D_s}(1)$ $\mathcal{G}^{B_s \to D_s}(1)$	1.068(40) 1.052(46)		
-	HPQCD 17B [0 FNAL/MILC 14 [0	518] 512]	$2+1+1 \\ 2+1$	A A	∘ ★	* 0	* *	0 0	< ✓	$\mathcal{F}^{B \to D^*}(1)$ $\mathcal{F}^{B \to D^*}(1)$	0.895(10)(24) 0.906(4)(12)	$h_{A_1}(1)$ (HPQCD) $h_{A_1}(1)$ (NRQCD, HPQCD)	
-	HPQCD 17B	518]	2+1+1	А	0	*	*	0	✓	$\mathcal{F}^{B_s \to D_s^*}(1)$	0.883(12)(28)	0.75 0.80 0.85 0.90 0.95	
	HPQCD 15, HPQCD 17 [614, 0 FNAL/MILC 15C [9	516] 513]	$2+1 \\ 2+1$	A A	∘ ★	0	∘ ★	0	√ √	R(D) R(D)	0.300(8) 0.299(11)		

[Atoui et al. EPJC74(2014)2861] [Bailey et al. PRD89(2014)114504] [Bailey et al. PRD92(2015)034506] [Na et al PRD92(2015)054510] [Monahan et al. PRD95(2017)114506] [Harrison et al. PRD97(2018)054502]

lattice QCD	$B_S \rightarrow K \ell \nu$	$B_s \rightarrow D_s \ell \nu$	$B \rightarrow D^* \ell \nu$	summary
000	000000000	0000	000000	00

Update Fermilab/MILC: $B \rightarrow D^* \ell \nu$ [A. Vaquero Lattice X IF 2019]

Results: Chiral-continuum fits

- Left Old fit, Right New fit. Preliminary blinded results.
- Both plots differ on the accounting of discretization effects, which seem to be large at large recoil

Old double ratio

$$\frac{C_{B\to D^+}^{3pt,A_1}(p_{\perp},t,T) C_{D^+\to B}^{3pt,A_1}(p_{\perp},t,T)}{C_{D^+\to D^+}^{3pt,Va}(0,t,T) C_{B\to B}^{3pt,Va}(0,t,T)} = \\ \frac{M_{D^*}}{E_{D^*}(p_{\perp})} \frac{Z_{D^*}^2(p_{\perp})}{Z_{D^*}^{2p}(0)} e^{-(E_{D^*}(p_{\perp})-M_{D^*})T} \left(\frac{1+w}{2}h_{A_1}(w)\right)^2$$

New ratio

$$\frac{C^{3pt,A_1}_{B\to D^*}(p_{\perp},t,T)}{C^{3pt,A_1}_{B\to D^*}(0,t,T)} \to \frac{C^{3pt,A_1}_{B\to D^*}(p_{\perp},t,T)}{C^{3pt,A_1}_{B\to D^*}(0,t,T)} \times \sqrt{\frac{C^{2pt}_{D^*}(0,t)}{C^{2pt}_{D^*}(p_{\perp},t)}}$$

 $\bar{B} \rightarrow D^* \ell \bar{\nu}$ at non-zero recoil

イロト イクト イモト イモト モー のくで

Aleiandro Vaguero (University of Utah)

 $\bar{B} \rightarrow D^* \ell \bar{\nu}$ at non-zero recoil

lattice	QCI
000	

 $\begin{array}{c} B_{\rm S} \rightarrow {\rm K}\ell\nu \\ 000000000 \end{array}$

 $B_S \rightarrow D_S \ell \nu$ 0000 $B \rightarrow D^* \ell \nu$ 000000 summary OO

Update JLQCD: $B
ightarrow D^* \ell
u$ [T. Kaneko Lattice X IF 2019]

▶ Ratio method:

$$rac{D^*|V^{ ext{lat}}_{\mu}|B
angle}{D^*|A^{ ext{lat}}_{\mu}|B
angle}
ightarrow rac{h_V(w)}{h_{A_1}(w)}$$

LQCD vs BGL vs CLN vs HQET

⇒ renormalization factors Z_A , Z_V cancel [Hashimoto et al. PRD61(1999)014502]

LQCD vs BGL vs CLN vs HQET

 $R_1 = h_V / h_{A1}$ $R_1 = h_V / h_{A1}$ BGL, CLN results : by courtesy of authors w/ Belle tagged '17 BGL. CLN results : by courtesy of authors w/ Belle tagged '17 BGL vs CLN, HQET BGL vs CLN, HQET Bernlochner et al Bernlochner et al Bigi et al. Bigi et al. Grinstein-Kobach Grinstein-Kobach $R_1(w)$ R1(W) our data favor the our data favor the **CLN** results **CLN** results Belle tagged + BGL (Bigi et al. '17) Belle un+tagged + BGL (Gambino et al. '19) - - · Belle tagged + CLN (Bernlochner et al. '17) - - - Belle tagged + CLN (Bernlochner et al. '17) Gambino et al '19 $\cdot - \cdot -$ HOET + OCDSR $\cdot - \cdot - HOET + OCDSR$ tagged+untagged 10 1.1 1 3

consistency among LQCD, BGL, CLN, HQET

w

Update JLQCD: $B
ightarrow D^* \ell
u$ [T. Kaneko Lattice X IF 2019]

lattice	QCD
000	

 $B_S \rightarrow K \ell \nu$

 $B_{\epsilon} \rightarrow D_{\epsilon} \ell \nu$

Further updates: $B \rightarrow D^* \ell \nu$

• HPQCD form factors for $B_{(s)} \rightarrow D^*_{(s)} \ell \nu$

[Plenary talk A. Lytle Lattice 2019]

HPQCD $B_{(s)} \rightarrow D^*_{(s)}$

▶ LANL/SWME form factors at zero recoil [PoS Lattice2018 283]

Figs. courtesy Judd Harrison

lattice QCD	$B_s \rightarrow K \ell \nu$	$B_s \rightarrow D_s \ell \nu$	$B \rightarrow D^* \ell \nu$	summa
000	000000000	0000	000000	0

Summary

- ▶ Many calculation for exclusive decays are in progress [OW overview talk Beauty 2019]
 - \rightarrow Calculations are hard, tedious, and take time
 - \leadsto Not easy to gain by considering the ratio $B_s \to K \mu \nu / B_s \to D_s \mu \nu$
- ► New ideas to compute inclusive decays using lattice techniques [Hashimoto PTEP 2017 (2017) 053B03] [Hansen, Meyer, Robaina arXiv:1704.08993] [Bailas Lattice 2019]

Interesting new ideas for radiative decays

[Kane et al. arXiv:1907.00279] [Martinelli Lattice 2019] [Sachrajda Lattice 2019]

▶ Not covered: B_c decays, $R(J/\psi)$, etc.

[Colquhoun et al. PoS Lattice2016 281][Harrison Poster Beauty 2019]

- ▶ Not covered: exclusive baryonic decays
 - $\rightarrow \Lambda_b \rightarrow \Lambda_c \ell \nu \text{ and } \Lambda_b \rightarrow p \ell \nu \Rightarrow |V_{cb}| / |V_{ub}| \text{ [Detmold, Lehner, Meinel, PRD92(2015)034503]}$
 - $ightarrow \Lambda_b
 ightarrow \Lambda_c au
 u$ [Datta et al. JHEP08(2017)131]
 - $ightarrow \Lambda_c
 ightarrow \Lambda \ell
 u$ [Meinel PRL118(2017)082001]

Ratio $B_s \rightarrow K \mu \nu / B_s \rightarrow D_s \mu \nu$

▶ Phase space is quite different and our simulations are most precise near q_{max}^2

Order of steps in the lattice calculation does not help

- \rightarrow Chiral-continuum extrapolation and estimate of systematic uncertainties are performed before kinematical z-expansion
- --- Modified z-expansion for ratio or simultaneous correlated fit of form factors

lattice QCD

 $B_s \rightarrow D_s \ell \nu$ 0000

Ratio $B_s \to K \mu \nu / B_s \to D_s \mu \nu$

- ► HPQCD [Monahan et al. PRD98(2018)114509]
- \rightarrow 2+1 flavor asqtad sea quark;
 - u, d, s, c HISQ valence, NRQCD b
- \rightarrow Correlated and simulatenous fits
- → Perturbative NRQCD-continuum matching with significantly reduced uncertainty

- ▶ Fermilab/MILC [Bazavov et al. PRD100(2019)034501]
- → 2+1 flavor asqtad sea and u, d, s valence quark; Fermilab/RHQ c, b
- \rightarrow Combination z extrapolated form factors over restricted q^2 range
- \rightarrow Neglecting statistical correlations

