
Automated (L)PT and RHQ in the Columbia formulation

Christoph Lehner RIKEN/BNL Research Center

RBC/UKQCD B physics update

DWF light quarks, RHQ heavy quarks

Tuning of the Columbia-RHQ action

(El-Khadra et al. 1997)
(S. Aoki et al. 2003) (Christ et al. 2006)

- Anisotropic (no $t \leftrightarrow x$ symmetry) clover-improved Wilson action
- Columbia formulation:

$$S = \sum_{x} \overline{Q}(x) \left((\gamma_0 D_0 - \frac{1}{2} D_0^2) + \zeta \sum_{i=1}^{3} (\gamma_i D_i - \frac{1}{2} D_i^2) + m_0 + c_P \sum_{\mu,\nu=0}^{3} \frac{i}{4} \sigma_{\mu\nu} F_{\mu\nu}(x) \right) Q(x)$$

► Tune coefficients of dimension 4 and 5 operators to remove $|\vec{ap}|$, $(am)^n$, $|\vec{ap}|(am)^n$ errors in on-shell quantities:

$$m_0$$
, ζ , c_P

Perturbative tuning

Match on-shell quantities after field rotation

$$Q'(x) = Q(x) + \frac{d_1}{d_1} \sum_{i=1,2,3} \gamma_i D_i Q(x)$$

with parameter d_1 .

Determine d_1 , am_0 , and ζ by matching of the bilinear

$$S(p) = \langle Q'(p)\overline{Q}'(-p)\rangle$$

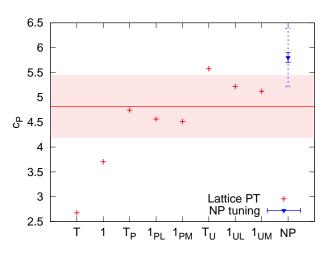
to the continuum for on-shell momenta:

- ightharpoonup am₀ from position of the pole
- \blacktriangleright ζ from dispersion relation
- $ightharpoonup d_1$ from spinor structure

Perturbative tuning

Determine *c_P* by matching to the continuum the three-point function

$$egin{aligned} \Lambda_{\mu}^{\mathtt{a}}(p,q) &= \langle Q'(p) A_{\mu}^{\mathtt{a}}(-p-q) \overline{Q}'(q)
angle_{\mathrm{amp}} \ &= \langle Q'(p) \overline{Q}'(-p)
angle^{-1} \langle Q'(p) A_{
u}^{\mathtt{b}}(-p-q) \overline{Q}'(q)
angle \ & imes \langle Q'(-q) \overline{Q}'(q)
angle^{-1} [D(p+q)^{-1}]_{
u\mu}^{\mathtt{ba}} \,, \end{aligned}$$

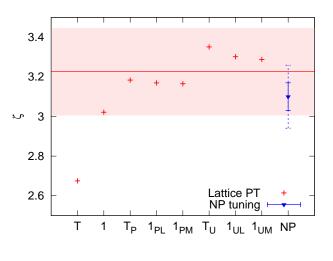

where

$$D(k)^{ab}_{\mu\nu} = \langle A^a_\mu(k) A^b_\nu(-k) \rangle^{-1}$$
.

Non-perturbative tuning

- ► Since d₁ only enters through the field rotation, it has no effect on the hadron spectrum of the theory.
- ▶ We can tune m_0 , ζ , and c_P non-perturbatively using meson masses and make predictions about the mass spectrum without knowledge of d_1 (talk by O. Witzel on Monday).

For (axial-)vector operators or four-quark operators we need LPT to determine higher-dimensional correction terms.



24³ ensembles

- (T)ree level
- (1) loop
- (P)laquette MF improvement
- Landau gauge (U) link
 MF improvement
- Expansion in (L)attice coupling
- Expansion in (M)Sbar coupling, μ = 1/a
- NP: non-perturbative tuning result

 $\mathsf{PT}\;\mathsf{result} = (1_{PM} + 1_{UM})/2$

- lacktriangle PT error is maximum of naive $lpha_{
 m s}^2\sim$ 5% error and $(1_{\it UM}-1_{\it PM})$
- ▶ NP error is stat. (inner) and stat. + syst. in quadrature (outer)

24³ ensembles

- T)ree level
 - (1) loop
- (P)laquette MF improvement
- Landau gauge (U) link
 MF improvement
- Expansion in (L)attice coupling
- Expansion in (M)Sbar coupling, μ = 1/a
- NP: non-perturbative tuning result

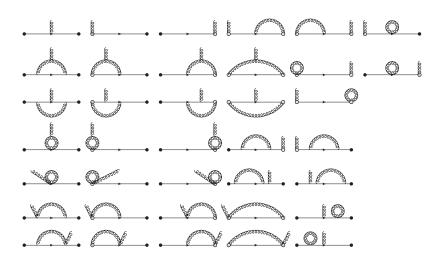
 $\mathsf{PT}\;\mathsf{result} = (1_{PM} + 1_{UM})/2$

- lacktriangle PT error is maximum of naive $lpha_{
 m s}^2\sim$ 5% error and $(1_{\it UM}-1_{\it PM})$
- ▶ NP error is stat. (inner) and stat. + syst. in quadrature (outer)

▶ New computer algebra system (CAS) as a C++ library

▶ Direct access to parsed expression tree in C++

Speed comparable to FORM, for some applications faster


► Some special features: function map, optimized series expansion, hooks

On top of new CAS: unified LPT, continuum PT framework (RI \rightarrow $\overline{\text{MS}}$)

Excerpt of RHQ tuning code

```
Context c:
// use rhq + gauge action
ActionRHQ rhq(&c, "Q");
ActionGAUGE gauge(&c);
// define field rotations
c.coefficients << "d1FT";
const char* OimpD =
 "(1 + sum(i,4)*d1FT(i)*Ngamma(i)*aD(i,x))*Q(x)";
FieldRotationRHQ Qimp(&c, "Q", "QimpmomT", QimpD);
const char* QbimpD =
 "Qb(x)*(1 - sum(j,4)*d1FT(j)*Ngamma(j)*aDl(j,x))":
FieldRotationRHQ Qbimp(&c, "Qb", "QbimpmomT", QbimpD);
// perform wick contractions
Wick w(&c);
w << rhq << gauge << Qimp << Qbimp;
Expression * vertex = w.contract(
 "sum(k,mom)*QimpmomT(q)*aACmom(mu1,a1,k)*QbimpmomT(-p)",3);
Expression * prop = w.contract(
 "sum(q,mom)*QimpmomT(p)*QbimpmomT(q)",2);
```

One loop vertex diagrams

How to define a lattice action:

Simple example for CAS base layer:

```
Context c;
Expression* e = _("D*Sin(x + y)*Cos(x)*STOP");
_repeat();
_id(c,e,"D*Sin(x?)","Cos(x) + Sin(x)*D");
_id(c,e,"D*Cos(x?)","-Sin(x) + Cos(x)*D");
_id(c,e,"D*STOP","0");
_endrepeat();
_id(c,e,"STOP","1");
```

LPT at the precision frontier

▶ Speed: ~ 10 s for calculation of 1-loop corrections to propagator to 10^{-3} accuracy

► Two loop calculations feasible ⇒ significantly reduce systematic error

▶ 1-loop PT tuning of all coefficients in an $O(ap)^2$ improved action (Oktay and Kronfeld '08 at tree level)

Concluding remarks

- ▶ Targets: f_B , ξ (talk by O. Witzel), $B \to \pi$ form factor (talk by T. Kawanai)
- ▶ RHQ action for bottom quarks tuned
- Automated (L)PT framework is in place
 - Very general setup (arbitrary action, field rotations; also continuum regulator)
 - RHQ, DWF, improved gauge, and continuum actions implemented
 - Should allow for rapid progress on similar calculations in the future
 - ► New CAS as a side result
- ► Operator matching in progress

Backup slides

Non-perturbative tuning - Methodology

(Y. Aoki, ..., Izubuchi, CL, Soni, Van de Water, Witzel 2012)

- ▶ Tuning of RHQ bottom quark in the B_s (PS), B_s^* (V) system
- Match the following spectral quantities to their experimental values:
 - ► Spin-averaged mass: $\overline{m} = (m_{B_s} + 3m_{B_s^*})/4 \stackrel{!}{=} 5403.1(1.1) \text{ MeV}$
 - ► Hyperfine-splitting: $\Delta_m = m_{B_s^*} m_{B_s} \stackrel{!}{=} 49.0(1.5)$ MeV
 - ► Speed of light (in B_s): $m_1/m_2 \stackrel{!}{=} 1$ with

$$E = m_1 + \frac{p^2}{2m_2} + \mathcal{O}(p^4)$$
.

Only HL quantities

Lattice ensembles

(Allton et al. 2008, Y. Aoki et al. 2010)

						# time
$(L/a)^3 \times (T/a)$	$\approx a(\text{fm})$	am_l	am_h	$M_{\pi}({ m MeV})$	# configs.	${\rm sources}$
$24^{3} \times 64$	0.11	0.005	0.040	329	1636	1
$24^{3} \times 64$	0.11	0.010	0.040	422	1419	1
$32^{3} \times 64$	0.086	0.004	0.030	289	628	2
$32^{3} \times 64$	0.086	0.006	0.030	345	889	2
$32^{3} \times 64$	0.086	0.008	0.030	394	544	2

2+1 light DWF & Iwasaki gauge action & $L_t=64$, $L_s=16$