



# The $B^*B \pi$ coupling with relativistic heavy quarks

Ben Samways Supervisor: Jonathan Flynn University of Southampton RBC/UKQCD Collaboration

ben.samways@soton.ac.uk



# UKQCD

Rudy Arthur **Richard Kenway** Peter Boyle Andrew Lytle Hei-Man Choi Marina Marinkovic Luigi Del Debbio Enrico Rinaldi Shane Drury **Brian Pendleton** Jonathan Flynn Antonin Portelli Julien Frison Chris Sachrajda Nicolas Garron **Ben Samways** Jamie Hudspith Karthee Sivalingam Tadeusz Janowski Matthew Spraggs Andreas Juettner Tobi Tsang

# RBC

Ziyuan Bai Thomas Blum Norman Christ Tomomi Ishikawa Taku Izubuchi Luchang Jin Chulwoo Jung Taichi Kawanai Chris Kelly **Daigian Zhang** Jianglei Yu

Hyung-Jin Kim Christoph Lehner Jasper Lin Meifeng Lin **Robert Mawhinney** Greg McGlynn David Murphy Shigemi Ohta **Eigo Shintani** Amarjit Soni **Oliver Witzel** Hantao Yin



## Contents

#### 1. Heavy-quark physics

- Probing the Standard Model
- Heavy Meson Chiral Perturbation Theory
- $B^*B\pi$  coupling

## 2. $B^*B\pi$ coupling calculation

- Correlation functions
- Ratios

#### 3. Results

- Chiral and continuum extrapolations
- Systematic errors
- 4. Conclusions



## Heavy-quark physics



#### B-physics useful to test Standard Model / constrain CKM matrix

#### Lots of experimental progress

- LHCb (+ Atlas, CMS)
- BaBar
- Belle

#### Theoretical Input also needed

- Perturbation theory
- Lattice QCD



# Heavy-quark physics

#### Neutral B-meson mixing

$$\Delta m_q = \frac{G_F^2 m_W^2}{6\pi^2} \eta_B S_0 m_{B_q} f_{B_q}^2 B_{B_q} |V_{tq}^* V_{tb}|^2$$

Oliver Witzel's tallk here earlier for  $\rm f_{Bd}$  and  $\rm f_{Bs}$ 

- Inami-Lim function,  $S_0$  and  $\eta_B$  accessible through perturbation theory
- Decay constant and bag parameter are non-perturbative
- Experimental uncertainties on  $\Delta m_q$  are < 1%
- Current lattice uncertainties for  $\xi$  are ~ 3%

#### $B \rightarrow \pi \, I \, \nu$ form factor

See Taichi Kawanai's talk here earlier

 $\bullet$  Allows determination of  $|V_{ub}|$ 

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2}{192\pi^3 m_B^3} \left[ (m_B^2 + m_\pi^2 - q^2) - 4m_B^2 m_\pi^2 \right]^{3/2} |f_+(q^2)^2| V_{ub}$$





## Heavy Meson Chiral Perturbation Theory

Light-quark masses:  $m_{\mu}, m_{d}, m_{s} \ll \Lambda_{QCD}$  (maybe not strange...)

- Chiral symmetry: write EFT in terms of pseudo-goldstone bosons from SSB.
- Chiral Perturbation Theory (xPT)

Heavy-quark masses:  $m_c, m_b, m_t >> \Lambda_{QCD}$  (maybe not charm...)

- For large m<sub>a</sub> heavy quarks become like static colour source
- Spin-flavour symmetry
- Heavy quark effective theory (HQET) •

Heavy Meson XPT: 
$$\mathcal{L}_{HM\chi PT}^{int} = gTr\left(\bar{H}_a H_b \mathcal{A}_{\mu}^{ba} \gamma^{\mu} \gamma 5\right)$$
  
$$H = \frac{1+\psi}{2} \left(B_{\mu}^* \gamma^{\mu} - B\gamma_5\right) \qquad \mathcal{A}_{\mu} = \frac{i}{2} \left(\xi^{\dagger} \partial^{\mu} \xi + \xi \partial^{\mu} \xi^{\dagger}\right)$$



# $B^*B \pi$ coupling definition

• Defined by strong matrix element

$$\langle B(p)\pi(q)|B^*(p',\lambda)\rangle = -g_{B^*B\pi} q \cdot \epsilon^{\lambda}(p')$$

• Equivalent quantity in HM  $\chi$  PT  $\langle B(p)\pi(q)|B^*(p',\lambda)\rangle = -\frac{2m_B}{f_\pi}g_b \ q \cdot \epsilon^{\lambda}(p')$ 



## Chiral extrapolations

- Cannot perform lattice simulation at physical light-quark mass
- Perform extrapolations guided by NLO HM  $\chi$  PT

$$f_{B_d} = F\left(1 + \frac{3}{4}(1 + 3g_b^2)\frac{m_\pi^2}{(4\pi f_\pi)^2}\log(m_\pi^2/\mu^2)\right) + \cdots$$

$$B_{B_d} = B\left(1 + \frac{3}{4}(1 - 3g_b^2)\frac{m_\pi^2}{(4\pi f_\pi)^2}\log(m_\pi^2/\mu^2)\right) + \cdots$$

Knowledge of g<sub>b</sub> will decrease the systematic uncertainties



## **Relativistic Heavy-Quark Action**

[N. Christ, M. Li and H.w. Lin, Physical Review D 76 (2007)]

$$S_{RHQ} = a^4 \sum_{x,y} \bar{\psi}(y) \left( m_0 + \gamma_0 D_0 + \xi \vec{\gamma} \cdot \vec{D} - \frac{a}{2} (D_0)^2 - \frac{a}{2} \xi(\vec{D})^2 + \sum_{\mu\nu} \frac{ia}{4} c_p \sigma_{\mu\nu} F_{\mu\nu} \right)_{y,x} \psi(x)$$

- Only 3 unknown parameters: m<sub>0</sub>, ζ, c<sub>p</sub>
- Improved to O(ma)<sup>n</sup> for all n, and to O(pa).
- Parameters have been tuned non-perturbatively

[Y. Aoki et al., Phys Rev D 86 (2012)]



ICSS[]

# Computing the coupling

LSZ reduction, PCAC relation

$$g_{B^*B\pi}(q^2)\epsilon^{\lambda} \cdot q = \frac{m_{\pi}^2 - q^2}{f_{\pi}m_{\pi}^2} \int_x \langle B(p) | q_{\mu}A^{\mu}(x) | B^*(p',\lambda) \rangle$$

Form factor decomposition

$$\langle B(p)|A^{\mu}|B^{*}(p',\lambda)\rangle = 2m_{B^{*}}A_{0}(q^{2})\frac{\epsilon \cdot q}{q^{2}}q^{\mu}$$

$$+ (m_{B^{*}} + m_{B})A_{1}(q^{2})\left[\epsilon^{\mu} - \frac{\epsilon \cdot q}{q^{2}}q^{\mu}\right]$$

$$+ A_{2}(q^{2})\frac{\epsilon \cdot q}{m_{B^{*}} + m_{B}}\left[p^{\mu} + p'^{\mu} - \frac{m_{B^{*}}^{2} - m_{B}^{2}}{q^{2}}q^{\mu}\right]$$

$$g_{B^*B\pi} = \frac{2m_{B^*}A_0(0)}{f_{\pi}}$$
 at q<sup>2</sup>=0

## Computing the coupling

- We need  $A_0(0)$ , but cannot simulate at  $q^2=0$
- $A_0$  has pole at  $q^2 = m_{\pi}^2$  so difficult to extrapolate
- Use relation

$$g_{B^*B\pi} = \frac{1}{f_\pi} \left[ (m_{B^*} + m_B) A_1(0) + (m_{B^*} - m_B) A_2(0) \right]$$

• In static limit:

$$g_{B^*B\pi} = \frac{2m_B}{f_\pi} A_1(0)$$



### Lattice correlation functions

#### Three point function:

$$C_{\mu\nu}^{(3)}(t_x, t_y; \bar{p}, \bar{p}') = \sum_{\bar{x}\bar{y}} e^{-\imath \bar{p} \cdot \bar{x}} e^{-\imath \bar{p}' \cdot \bar{y}} \langle B(y) A_{\nu}(0) B^*(x) \rangle_{t_x < 0 < t_y}$$
$$\approx \sum_{\lambda} \frac{Z_B^{1/2} Z_{B^*}^{1/2}}{2E_B 2E_{B^*}} \langle B(p') | A_{\nu} | B^*(p, \lambda) \rangle (\epsilon^{\lambda})_{\mu} e^{-E_B t_y} e^{-E_{B^*}(T - t_x)}$$

Two point functions:

$$C_{BB}^{(2)}(t;\bar{p}) = \sum_{\bar{x}} e^{-i\bar{p}\cdot\bar{x}} \langle B(x)B(0)\rangle \approx Z_B \frac{e^{-E_B t}}{2E_B}$$
$$C_{B_{\mu}^*B_{\nu}^*}^{(2)}(t;\bar{p}) = \sum_{\bar{x}} e^{-i\bar{p}\cdot\bar{x}} \langle B_{\nu}^*(x)B_{\mu}^*(0)\rangle \approx Z_{B^*} \frac{e^{-E_B * t}}{2E_{B^*}} \left(\delta_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2},\right)$$



## Lattice correlation functions





#### **Correlator ratios**

[Abada, A. et al. Physical Review D (2002)]

ICSS[]

Set 
$$\bar{p} = \bar{p}' = 0$$
 such that  $q_0^2 = (m_{B^*} - m_B)^2 \approx 0$ 

$$R_{1} = \frac{C_{i,i}^{(3)}(t_{x}, t_{y}; \bar{p}, \bar{p}') Z_{B}^{1/2} Z_{B^{*}}^{1/2}}{C_{BB}^{(2)}(t_{y}; \bar{p}) C_{B_{i}^{*}B_{i}^{*}}^{(2)}(T - t_{x}; \bar{p})} = (m_{B^{*}} + m_{B}) A_{1}(q_{0}^{2})$$

To extract  $A_2$  inject one unit of momentum

$$\bar{q} = \bar{p} = (1,0,0) \times 2\pi/L$$

$$R_{2} = \frac{C_{1,0}^{(3)}(t_{x}, t_{y}; \bar{p}, \bar{p}') Z_{B}^{1/2} Z_{B^{*}}^{1/2}}{C_{BB}^{(2)}(t_{y}; \bar{p}) C_{B_{2}^{*}B_{2}^{*}}^{(2)}(T - t_{x}; \bar{p})} \qquad R_{3} = \frac{C_{1,1}^{(3)}(t_{x}, t_{y}; \bar{p}, \bar{p}') Z_{B}^{1/2} Z_{B^{*}}^{1/2}}{C_{BB}^{(2)}(t_{y}; \bar{p}) C_{B_{2}^{*}B_{2}^{*}}^{(2)}(T - t_{x}; \bar{p})}$$

$$\frac{A_2}{A_1} = \frac{(m_{B^*} + m_B)^2}{2m_B^2 q_1^2} \left[ -q_1^2 + E_{B^*}(E_{B^*} - m_B) - \frac{m_{B^*}^2(E_{B^*} - m_B)}{E_{B^*}} \frac{R_3}{R_4} - i\frac{m_{B^*}^2 q_1}{E_{B^*}} \frac{R_2}{R_4} \right]$$

# Gauge configurations

#### RBC/UKQCD 2+1 flavour Domain-wall fermion / Iwasaki gauge action

| $L^3 \times T$   | a(fm) | $m_l a$ | $m_s a$ | $m_{\pi}({ m MeV})$ | #Configs   | Sources |
|------------------|-------|---------|---------|---------------------|------------|---------|
| $24^3 \times 64$ | 0.11  | 0.005   | 0.04    | 329                 | 1636       | 1       |
| $24^3 \times 64$ | 0.11  | 0.010   | 0.04    | 422                 | 1419       | 1       |
| $24^3 \times 64$ | 0.11  | 0.020   | 0.04    | 558                 | <b>345</b> | 1       |
| $32^3 \times 64$ | 0.08  | 0.004   | 0.03    | 289                 | 628        | 2       |
| $32^3 \times 64$ | 0.08  | 0.006   | 0.03    | 345                 | 889        | 2       |
| $32^3 \times 64$ | 0.08  | 0.008   | 0.03    | 394                 | <b>544</b> | 2       |

[Aoki, Y, et al. Physical Review D (2011)]

- Physical volume ~2.6fm
- Pions from 290 560 MeV

## Preliminary results





## Preliminary results



$$g = g_0 \left( 1 - \frac{2(1+2g_0^2)}{(4\pi f_\pi)^2} m_\pi^2 \log \frac{m_\pi^2}{\mu^2} + \alpha m_\pi^2 + \beta a^2 \right)$$

[W. Detmold, C.J. Lin and S. Meinel, Physical Review D 84 (2011) 094502, 1108.5594]



- Chiral extrapolation
- Continuum extrapolation
- Unphysical strange-quark mass
- Uncertainties in the RHQ parameters
- Finite volume corrections
- Lattice spacing uncertainty



- Chiral extrapolation
- Continuum extrapolation
- Unphysical strange-quark mass
- Uncertainties in the RHQ parameters
- Finite volume corrections
- Lattice spacing uncertainty 1%

- Chiral extrapolation
- Continuum extrapolation
- Unphysical strange-quark mass
- Uncertainties in the RHQ parameters
- Finite volume corrections 1%
- Lattice spacing uncertainty 1%

## **RHQ** parameter uncertainties





## **RHQ** parameter uncertainties

|            | $m_o a$            | $c_p$               | ξ                 |
|------------|--------------------|---------------------|-------------------|
| a≈0.11 fm  | 8.45(6)(13)(50)(7) | 5.8(1)(4)(4)(2)     | 3.10(7)(11)(9)(0) |
| a≈0.056 fm | 3.99(3)(6)(18)(3)  | 3.57(7)(22)(19)(14) | 1.93(4)(7)(3)(0)  |

RHQ parameter uncertainties (statistical, HQ discretisation, lattice spacing, experimental) [Y. Aoki et al., Phys Rev D 86 (2012)]





- Chiral extrapolation
- Continuum extrapolation
- Unphysical strange-quark mass
- Uncertainties in the RHQ parameters 1.5%
- Finite Volume corrections 1%
- Lattice spacing uncertainty 1%

# Unphysical strange-quark mass

- $m_{physical}$  differs from  $m_{simulated}$  by ~10%
- No valence strange-quarks, only a sea effect



Cannot discern any effect within statistics

Using partially quenched HM  $\chi$  PT: ~1.5% effect

- Chiral extrapolation
- Continuum extrapolation
- ✓ Unphysical strange-quark mass 1.5%
- ✓ Uncertainties in the RHQ parameters 1.5%
- Finite Volume corrections 1%
- ✓ Lattice spacing uncertainty 1%



## Heavy-quark discretisation errors

Write Symanzik-like effective theories for QCD and the lattice theory

$$\mathcal{L}^{QCD} \doteq \mathcal{L}^{Sym} = \dots - \bar{Q} \left( \gamma_4 D_4 + m_1 + \sqrt{\frac{m_1}{m_2}} \gamma \cdot \mathbf{D} \right) Q + \sum_i \mathcal{C}_i^{Cont}(g^2, m_2 a, \mu a) \mathcal{O}_i$$

$$\mathcal{L}^{Lat} = \dots - \bar{Q} \left( \gamma_4 D_4 + m_1 + \sqrt{\frac{m_1}{m_2}} \gamma \cdot \mathbf{D} \right) Q + \sum_i \mathcal{C}_i^{Lat}(g^2, m_2 a, \mu a) \mathcal{O}_i$$

Discretisation effects come from mismatch between coefficients  $C_i^{lat} - C_i^{cont}$  $O_i$  and  $C_i$  have been calculated to tree level

[M.B. Oktay and A.S. Kronfeld, Phys Rev D 78 (2008)]

$$g_b^{\text{error}} = g_b \sum_i \left( \mathcal{C}_i^{Cont} - \mathcal{C}_i^{Lat} \right) \sum_i \frac{\langle \mathcal{O}_i \rangle}{2M_B}$$

Estimate  $\langle O_i \rangle$  using HQET power-counting

 $\langle \mathcal{O}_E \rangle^{HQET} \sim a^2 \Lambda_{OCD}^3$ 

Error negligible



## Light-quark and gluon discretisation errors





### Chiral extrapolation



ICSS[]

Chiral extrapolation

10%

- Continuum extrapolation
- Unphysical strange-quark mass 1.5%
- ✓ Uncertainties in the RHQ parameters 1.5%
- Finite Volume corrections 1%
- Lattice spacing uncertainty 1%

Total systematic uncertainties 10.5%

 $g_b = 0.567(52)(58)$ 



## Conclusions

- We have determined the coupling g<sub>b</sub> and considered all sources of systematic errors
- This is the first result directly at the b-quark mass
- The result is consistent with other determinations, and between the average value of g<sub>c</sub> and the average value of g<sub>∞</sub>
- This result will prove useful in ongoing B-physics analyses by RBC/UKQCD and other collaborations



## Thank you for listening!

