B-meson decay constants with domain-wall light quarks and nonperturbatively tuned relativistic b-quarks

RBC and UKQCD collaborations

Oliver Witzel
Center for Computational Science

Lattice 2013, Mainz, Germany
Motivation: CKM unitarity triangle fit
Motivation: $B^0 - \overline{B^0}$ Mixing

- Allows us to determine the CKM matrix elements
- Dominant contribution in SM: box diagram with top quarks

$$\Delta M_q = \frac{G_F^2 m_W^2}{6\pi^2} \eta_B S_0 M_{Bq} f_{Bq}^2 B_{Bq} |V_{tq}^* V_{tb}|^2$$

- Nonperturbative contribution: $f_q^2 B_{Bq}$
- Define the $SU(3)$ breaking ratio
 $$\xi^2 = \frac{f_{B_s}^2 B_{B_s}}{f_{B_d}^2 B_{B_d}}$$

- CKM matrix elements are extracted by
 $$\frac{\Delta M_s}{\Delta M_d} = \frac{M_{B_s}}{M_{B_d}} \xi^2 \frac{|V_{ts}|^2}{|V_{td}|^2}$$

- Experimental error of ΔM_q is better than a percent; lattice uncertainty for ξ is about 3%
Motivation: Rare B-decays

$B \rightarrow \tau \nu$ [UTfit Phys.Lett. B687 (2010) 61]

- f_B is needed for the Standard-Model prediction of $BR(B \rightarrow \tau \nu)$
- Strong sensitivity to NP because FCNC processes are suppressed by the Glashow-Iliopoulos-Maiani (GIM)-mechanism in the SM
- Helicity suppressed charged current decays: potential sensitivity to tree-level effects of new scalar particles (charged Higgs bosons in multi-Higgs extensions of the SM, e.g. type-II Two Higgs Doublet Model or MSSM)

- f_{B_s} is needed for Standard-Model prediction of $BR(B_s \rightarrow \mu^+ \mu^-)$
- Measured by LHCb with 3.5σ significance [LHCb Phys.Rev.Lett. 110 (2013) 02180], at EPS2013: combination of LHCb and CMS results gives $> 5\sigma$ significance — in agreement with SM

Both are sensitive to new physics!
Our Project

- Use domain-wall light quarks and nonperturbatively tuned relativistic b-quarks to compute at few-percent precision
 - B^0–\overline{B}^0 mixing
 - Decay constants f_B and f_{B_s}
 - $B \rightarrow \pi \ell \nu$ form factor [T. Kawanai, Tue 14:20 Room C]
 - $g_{B^*B\pi}$ coupling constant [B. Samways, Tue 16:40 Room C]
- Tuned RHQ parameters using bottom-strange states and high statistics
- Validated tuning procedure by computing $b\overline{b}$ masses and splittings
- Use mostly-nonperturbative renormalization scheme for f_B, f_{B_s} and $B \rightarrow \pi \ell \nu$
- Use one-loop mean-field improved lattice perturbation theory for small correction, and to renormalize B-mixing matrix elements
[http://physyhcal.lhnrd.de] [C. Lehner, Tue 14:40 Room C]
2+1 Flavor Domain-Wall Gauge Field Configurations

- **Domain-wall fermions for the light quarks (u, d, s)**

- **Iwasaki gauge action**

 [Iwasaki UTlEP-118(1983)]

- **Configurations generated by RBC and UKQCD collaborations**

<table>
<thead>
<tr>
<th>L</th>
<th>a(fm)</th>
<th>m_l</th>
<th>m_s</th>
<th>m_π (MeV)</th>
<th>approx. # configs.</th>
<th># time sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>≈ 0.11</td>
<td>0.005</td>
<td>0.040</td>
<td>331</td>
<td>1636</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>≈ 0.11</td>
<td>0.010</td>
<td>0.040</td>
<td>419</td>
<td>1419</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>≈ 0.08</td>
<td>0.004</td>
<td>0.030</td>
<td>307</td>
<td>628</td>
<td>2</td>
</tr>
<tr>
<td>32</td>
<td>≈ 0.08</td>
<td>0.006</td>
<td>0.030</td>
<td>366</td>
<td>889</td>
<td>2</td>
</tr>
<tr>
<td>32</td>
<td>≈ 0.08</td>
<td>0.008</td>
<td>0.030</td>
<td>418</td>
<td>544</td>
<td>2</td>
</tr>
</tbody>
</table>
Relativistic Heavy Quark Action for the b-Quarks

- Relativistic Heavy Quark action developed by Christ, Li, and Lin

- Heavy quark mass is treated to all orders in $(m_b a)^n$
- Expand in powers of the spatial momentum through $O(\bar{p} a)$
 - Resulting errors will be of $O(\bar{p}^2 a^2)$
 - Allows computation of heavy-light quantities with discretization errors of the same size as in light-light quantities

- Applies for all values of the quark mass
- Has a smooth continuum limit
Nonperturbative Tuning of the RHQ Action Parameters

> Start from an educated guess for our three parameters $m_0 a$, c_P, and ζ

> Probe parameter space at seven points by measuring
 - spin-averaged mass: $\overline{M} = (M_{B_s} + 3M_{B_s^*})/4$
 - hyperfine-splitting: $\Delta_M = M_{B_s^*} - M_{B_s}$
 - ratio: $M_1/M_2 = M_{\text{rest}}/M_{\text{kinetic}}$

> Assume linearity to relate parameters and observables

> Obtain tuned parameters corresponding to physical b-quarks by requiring that \overline{M} and Δ_M agree with experiment and that $M_1 = M_2$
Predictions for the Heavy-Heavy States

- RHQ action describes heavy-light as well as heavy-heavy mesons
- Tuning the parameters in the B_s-system we can predict bottomonium states and mass splittings and thereby test the method
- We find good agreement with experiment within errors

\[\Upsilon = 9410(30)(38) \text{ MeV} \]
\[\eta_b = 9350(33)(37) \text{ MeV} \]
\[\chi_{b1} = 9851(35)(39) \text{ MeV} \]
\[\chi_{b0} = 9808(35)(39) \text{ MeV} \]
\[h_b = 9862(36)(39) \text{ MeV} \]

\[M_{\Upsilon} - M_{\eta_b} = 49(02)(17) \text{ MeV} \]
\[M_{\chi_{b1}} - M_{\chi_{b0}} = 38(01)(16) \]

\[M [\text{GeV}] \quad \Delta [\text{MeV}] \]

- Υ
- η_b
- χ_{b1}
- χ_{b0}
- h_b
B-meson Decay Constant Calculation

- Use point-source light quark and generate Gaussian smeared-source heavy quark
- Computation performed with seven parameter box and interpolated to the tuned RHQ parameters
- Axial current is 1-loop $O(a)$ improved
- Use mostly nonperturbative renormalization
- Combined chiral and continuum extrapolation using heavy meson χPT
Mostly Nonperturbative Renormalization

For f_B, f_{B_S} and $B \to \pi$ we compute mostly non-perturbative renormalization factors \textit{à la} [El-Khadra et al. Phys.Rev. D64 (2001) 014502]

$$Z_V^{bl} = \varrho^{bl} \cdot \sqrt{Z_V^{bb} Z_V^{ll}}$$

- Compute Z_V^{ll} and Z_V^{bb} non-perturbatively and only ϱ^{bl} perturbatively
- Enhanced convergence of perturbative series of ϱ^{bl} w.r.t. Z_V^{bl} because tadpole diagrams cancel in the ratio
- Bulk of the renormalization is due to flavor conserving factor $\sqrt{Z_V^{ll} Z_V^{bb}} \sim 3$
- ϱ^{bl} is expected to be of $\mathcal{O}(1)$; receiving only small corrections
- For domain-wall fermions $Z_A = Z_V + \mathcal{O}(m_{\text{res}})$ i.e. we know Z_V^{ll} [Y. Aoki et al. Phys.Rev. D83 (2011) 074508] and compute Z_V^{bb} ourselves
Motivation

Decay Constant

Results

Conclusion

Determination of Z_{V}^{bb}

$Z_{V}^{bb} \times \langle B \mid V^{bb,0} \mid B \rangle = 2m_{B}$

$\frac{C_{2}^{B}(T)}{C_{3}^{B \rightarrow B}(T,t)} \lim_{T,t \to \infty} Z_{V}^{bb}$

$Z_{V}^{bb} = 5.237(12)$

$m_{\text{sea}} = 0.006$

$\chi^{2}/\text{dof} = 0.34, \quad p = 95\%$

$m_{\text{sea}}^{l} = 0.006$

PRELIMINARY

<table>
<thead>
<tr>
<th>$a_{24} m_{\text{sea}}^{l}$</th>
<th>Z_{V}^{bb}</th>
<th>$a_{32} m_{\text{sea}}^{l}$</th>
<th>Z_{V}^{bb}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005</td>
<td>10.037(34)</td>
<td>0.004</td>
<td>5.270(13)</td>
</tr>
<tr>
<td>0.010</td>
<td>10.042(37)</td>
<td>0.006</td>
<td>5.237(12)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.008</td>
<td>5.267(15)</td>
</tr>
</tbody>
</table>

Avg. (24) 10.093(25) Avg. (32) 5.2560(76)

PT (24) 1-loop 10.72(16)(0) PT (32) 1-loop 5.725(74)(1)

PT values: http://physyhcal.lhnr.de
On the lattice we compute Φ_{Bq}

$$f_B = \Phi_{Bq}^{\text{ren}} \cdot a_3^{3/2} \sqrt{M_{Bq}}$$

- Partially quenched data are highly correlated
- Variance-covariance matrix is statistically well resolved
- Linearly interpolate to get f_{Bs} and fit to extrapolate to f_B
Preliminary Results Φ_{B_s}

Data for Φ_{B_s} show no sea-quark mass dependence.

Average data at same lattice spacing and assume a^2 scaling to remove light-quark and gluon discretization errors.

Remaining heavy-quark discretization errors will be estimated with heavy-quark power counting and included in the systematic error budget.
Preliminary Results Φ_{B_d}

- Fit only “chiral” data i.e. $a_{24} m_q < 0.01$ ($m_\pi < 420$ MeV)
 using an analytic function in the quark masses and lattice spacing
 $\Phi_B = \Phi_0 \left[1 + c_{sea} m_{sea}^l 2B/(4\pi f)^2 + c_{val} m_{val} 2B/(4\pi f)^2 + c_a a^2/(a_{32}^2 4\pi f)^2 \right]$

\[\phi_{B_d} = 0.132(4) \rightarrow f_B = 198(8)\text{MeV} \]
Preliminary Results Φ_{B_s}/Φ_{B_d}

- Fit only “chiral” data i.e. $a_24m_q < 0.01$ ($m_\pi < 420$ MeV)
 using an analytic function in the quark masses and lattice spacing

$$\Phi_{B_s}/\Phi_B = R_\Phi \left[1 + c_{\text{sea}} m_{\text{sea}} l^2 B/(4\pi f)^2 + c_{\text{val}} m_{\text{val}} l^2 B/(4\pi f)^2 + c_a l^2/(a_{32}^2 4\pi f)^2 \right]$$

PRELIMINARY
Comparison

<table>
<thead>
<tr>
<th>f_{B_s}/f_B</th>
<th>$2+1+1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPQCD 2013 (HISQ+NRQCD)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f_B</th>
<th>$2+1+1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPQCD 2013 (HISQ+NRQCD)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f_B</th>
<th>$2+1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPQCD 2012 (Asqtad+NRQCD)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f_B</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPHA 2012 (Wilson+HQET)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f_B</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETM 2012 (TM+HQET)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f_B</th>
<th>$2+1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>this work (stat. error only)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f_B</th>
<th>$2+1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPQCD 2012 (Asqtad+NRQCD)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f_B</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPHA 2012 (Wilson+HQET)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f_B</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETM 2012 (TM+HQET)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f_B</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>this work (stat. error only)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f_B</th>
<th>$2+1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPQCD 2012 (Asqtad+NRQCD)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f_B</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPHA 2012 (Wilson+HQET)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f_B</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETM 2012 (TM+HQET)</td>
<td></td>
</tr>
</tbody>
</table>
Observations

- SU(2) HMχPT is valid for $m_{u,d} \ll m_s$. Are our data “chiral” enough?
- Our data do not show visible signs of SU(2) chiral logarithms.
- Strong correlations among partially quenched data are troublesome.
 Are light valence-quark masses too close to each other?

Preliminary Results

- $f_{B_s} = 235(6)$ MeV
- $f_B = 198(6)$ MeV $\Rightarrow f_{B_s}/f_B = 1.19(5)$
- $f_{B_s}/f_B = 1.173(7) \Rightarrow f_B = 200(5)$ MeV
- Overall consistent results

Outlook

- We are finalizing the analysis of f_B, f_{B_s} and f_{B_s}/f_B
- Next we start the computation of $B^0 - \overline{B^0}$ mixing
- Future data will be obtained at physical pions on the $48^3 \times 96$ and $64^3 \times 128$ Möbius domain-wall ensembles