

LATTICE 2015

The 33rd International Symposium on Lattice Field Theory Kobe International Conference Center, Kobe, Japan Tuesday, July 14 — Saturday, July 18, 2015

Improving our determinations of the decay constant f_B and the $B \rightarrow \pi l v$ semi-leptonic form factors using physical light quarks

Taichi Kawanai (Jülich Supercomputing Centre) in collaboration with RBC-UKQCD

Motivation

B-physics calculations on the lattice are of great phenomenological importance.

- Constraints on the apex (ρ̄, η̄) of the CKM triangle will strengthen tests of the Standard Model in the quark-flavor sector.
 - ► V_{ub} from $B \rightarrow \pi l v$ (yellow ring) from $B \rightarrow \tau v$ (orange ring)
 - B^{θ} - $\overline{B^{\theta}}$ mixing matrix elements (pink ring)
- *B*-physics allows us to identify new physics in rare B-decays.

- Both experimental results and calculating hadronic contribution are needed.
- The hadronic contribution must be computed nonperturbatively via lattice QCD.

Experiment + Lattice \rightarrow CKM matrix element

Exclusive determination of $|V_{ub}|$

 $f_{+}(q^{2})$ is crucial for the determination of the CKM matrix element $|V_{ub}|$. B meson semileptonic decay W_{+} PP

• The exclusive $B \rightarrow \pi l v$ semileptonic decay allows the determination of $|V_{ub}|$ via:

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2}{192\pi^3 m_{B_{(s)}}^3} \begin{bmatrix} (m_{B_{(s)}}^2 + m_P^2 - q^2)^2 - 4m_{B_{(s)}}^2 m_P^2 \end{bmatrix}^{3/2} \times |f_+(q^2)|^2 \times |V_{ub}|$$
Experiment
Known factor
Hadronic part CKM matrix

3

• There has been a long standing puzzle in the determination of $|V_{ub}|$. $\sim 3\sigma$ discrepancy between exclusive $(B \rightarrow \pi l v)$ and inclusive $(B \rightarrow X_u l v)$ determination.

New Physics in rare B-decays?

 f_B and f_{Bs} are important to identify new physics in Rare B decays.

- $B \rightarrow \tau v$ decay
 - *f*^{*B*} is needed for the Standard-Model prediction of BR($B \rightarrow \tau v$)
 - Potentially sensitive to charged-Higgs exchange due to large τ mass

- $B_s \rightarrow \mu^+ \mu^-$ decay
 - f_{Bs} is needed for the Standard-Model prediction of BR($B_s \rightarrow \mu^+ \mu^-$)
 - Strong sensitivity to NP because FCNC processes are suppressed by the Glashow-Iliopoulos-Maiani (GIM)-mechanism in the Standard-Model.

Higher-order flavor changing neutral current processes for the $B_s \rightarrow \mu^+ \mu^-$ decay allowed in the SM.

4

Our *B*-project

- $g_{B*B\pi}$ coupling constat J.M. Flynn et al. [arXiv:1506.06413]
- Decay constant f_B and f_{Bs} J.M. Flynn et al. Phys. Rev. D91 (2015) 074510

• $B \rightarrow \pi l v$ semileptonic decay

N. H. Christ, et al. Phys. Rev. D91 (2015) 054502

• Neutral B meson mixing

• Rear semileptonic decay e.g. $B \rightarrow K^* l^+ l^-$

Our *B*-project

Lattice actions and setup

 We use the 2+1 flavor dynamical domain-wall fermion gauge field configurations generated by the RBC/UKQCD Collaborations. C. Allton et al., Phys. Rev. D78, 114509 (2008) Y. Aoki et al., Phys.Rev. D83, 074508 (2011)

L ³ ×T	<i>a</i> [fm]	Mud	ms	<i>m</i> π [MeV]	# of configs.	# of sources
32 ³ × 64	≈ 0.08	0.004	0.03	289	628	2
32 ³ × 64	pprox 0.08	0.006	0.03	345	445	2
32 ³ × 64	pprox 0.08	0.008	0.03	394	544	2
24 ³ × 64	≈ 0.11	0.005	0.04	329	1636	I
24 ³ × 64	\approx 0.11	0.01	0.04	422	1419	I

- For the *b*-quark we use the relativistic heavy quark (RHQ) action developed by Li, Lin, and Christ. N. H. Christ et al., Phys.Rev. D76, 074505 (2007), H.-W. Lin et al., Phys.Rev. D76, 074506 (2007)
 - We use the nonperturbatively tuned parameters of the RHQ action.

Y.Aoki et. al Phys. Rev. D 86, 116003 (2012) 6

Lattice actions and setup

- We use $O(\alpha_s a)$ improved current operator with factors computed by lattice PT. C. Lehner arXiv:1211.4013
- We calculate the heavy-light current renormalization factor Z_V^{bl} using the mostly nonperturbative method.
 A. X. El-Khadra et al. Phys.Rev. D64, 014502 (2001)

$$Z_{V_{\mu}}^{bl} = \rho_{V_{\mu}}^{bl} \sqrt{Z_V^{bb} Z_V^{ll}}$$

compute nonperturbatively

compute with 1-loop mean-field improved lattice PT

• Z_V^{II} obtained by the RBC/UKQCD collaborations by exploiting the fact $Z_A = Z_V$ for domain-wall fermions.

Y. Aoki et al., Phys.Rev. D83, (2911) 074508

• Z_V^{bb} obtained from the matrix element of the $b \rightarrow b$ vector current between two Bs mesons.

N. H.Christ et al., Phys. Rev. D91 (2015) 074510

Lattice actions and setup

We will show preliminary results with physical pions.

- RBC/UKQCD Möbius domain-wall+ Iwasaki ensemble (*M*_π ~ I39MeV). RBC, UKQCD collaborations [Xiv:1411.7017]
- We generate I "exact" and 81 "sloppy" propagators on a each configuration.

• We use the all-mode-averaging (AMA) method	E. Shintani [arXiv:1402.0244]
--	-------------------------------

$L^3 \times T$	<i>a</i> [fm]	mud	ms	<i>m</i> π [MeV]	# of configs.
48 ³ × 96	≈ 0.11	0.00078	0.0362	139	30

N. H. Christ, et al. Phys. Rev. D91 (2015) 054502

B-meson decay constat

 $O(\alpha_{s}a)$ improved axial current operator

• On lattice, we compute decay amplitude Φ_B

$$\Phi_{B_d}^{\text{eff}} = \sqrt{2} \lim_{t_0 \ll t} \frac{C_{AP}(t, t_0)}{\sqrt{C_{PP}(t, t_0)}}$$
$$f_B = Z_{\Phi} \Phi_{B_q}^{\text{eff}} a^{-3/2} / \sqrt{M_{B_q}}$$

point-source light quark
Gaussian smeared-source heavy quark

Perform analysis in terms of dimensionless ratios over M_{Bs}

Chiral-continuum extrapolation of f_B

- NLO SU(2) HM χ PT to data with unitary M_{π}
 - $g_{B*B\pi}=0.57(8)$, $f_{\pi}=130.4$ MeV, $\Lambda_{\chi}=1$ GeV
- Only data points with filled symbols included in the fit (M_{π} <450MeV)
- Statistical errors only

Continuum extrapolation of f_{Bs}

- No sea-quark mass dependence in Φ_{Bs}
- Average data at same lattice spacing
- Statistical errors only

Error budgets and Comparison with other results

• Dominant uncertainties from statistics and chiral extrapolation.

Good agreement with other results.

Semileptonic decay form factor

J.M. Flynn et al. Phys. Rev. D91 (2015) 074510

J.M. Flynn et al. Phys. Rev. D91 (2015) 074510

Form-factor definitions

• Non-perturbative form factors $f_+(q^2)$ and $f_0(q^2)$ parametrize the hadronic matrix element of the $b \to u$ quark flavor-changing vector current V_{μ} .

$$\langle P|V_{\mu}|B_{(s)}\rangle = f_{+}(q^{2})\left(p_{B_{(s)}}^{\mu} + p_{P}^{\mu} - \frac{m_{B_{(s)}}^{2} - p_{P}^{2}}{q^{2}}q^{\mu}\right) + f_{0}(q^{2})\frac{m_{B_{(s)}}^{2} - p_{P}^{2}}{q^{2}}q^{\mu}$$

- On the lattice, we calculate the form factors $f_{||}$ and f_{\perp} .
 - ▶ Proportional to vector current matrix elements in the $B_{(s)}$ meson rest frame:

$$f_{\parallel}(E_P) = \langle P|V_0|B_{(s)}\rangle/\sqrt{2m_{B_{(s)}}}$$
$$f_{\perp}(E_P)p_i = \langle P|V_i|B_{(s)}\rangle/\sqrt{2m_{B_{(s)}}}$$

► Easy to relate to the desired form factor $f_+(q^2)$ and $f_0(q^2)$.

$$f_{0}(q^{2}) = \frac{\sqrt{2m_{B_{(s)}}}}{m_{B_{(s)}}^{2} - m_{P}^{2}} \left[(m_{B_{(s)}} - E_{P})f_{\parallel}(E_{P}) + (E_{P}^{2} - m_{P}^{2})f_{\perp}(E_{P}) \right]$$

$$f_{+}(q^{2}) = \frac{1}{\sqrt{2m_{B_{(s)}}}} \left[f_{\parallel}(E_{P}) + (m_{B_{(s)}} - E_{P})f_{\perp}(E_{P}) \right]$$

J.M. Flynn et al. Phys. Rev. D91 (2015) 074510 Calculation of lattice form factors

• Extract the lattice form factor from the ratio of the 3pt function to 2pt functions:

J. A. Bailey et al. (Fermilab Lattice and MILC), Phys. Rev. D79, 054507 (2009).

$$\begin{aligned} R_{3,\mu}^{B_{(s)} \to P}(t,T) &= \frac{C_{3,\mu}^{B_{(s)} \to P}(t,T)}{\sqrt{C_2^P(t)C_2^{B_{(s)}}(T-t)}} \sqrt{\frac{2E_P}{e^{-E_P t}e^{-m_{B_{(s)}}(T-t)}}} \\ f_{\parallel}^{\text{lat}} &= \lim_{t,T \to \infty} R_0^{B_{(s)} \to P}(t,T) \\ f_{\perp}^{\text{lat}} &= \lim_{t,T \to \infty} \frac{1}{p_P^i} R_i^{B_{(s)} \to P}(t,T) \end{aligned}$$

- We use the lattice data up to (1,1,1) for $B \rightarrow \pi$ and (2,0,0) for $B_s \rightarrow K$.
- After a careful study, we fix source-sink separations $T t_0$
- We fit the ratio to a plateau in the region $0 \ll t \ll T$.

• RBC/UKQCD Möbius domain-wall+ Iwasaki ensemble ($M_{\pi} \sim 139$ MeV).

18

Black curves show chiral-continuum extrapolation using Hard-pion NLO SU(2) χ PT. 19

Chiral-continuum extrapolations of $f_{||}$ and f_{\perp}

Black curves show chiral-continuum extrapolation using Hard-pion NLO SU(2) χ PT. 20

J.M. Flynn et al. Phys. Rev. D91 (2015) 074510

f_+ and f_0

$$f_{0}(q^{2}) = \frac{\sqrt{2m_{B_{(s)}}}}{m_{B_{(s)}}^{2} - m_{P}^{2}} \left[(m_{B_{(s)}} - E_{P})f_{\parallel}(E_{P}) + (E_{P}^{2} - m_{P}^{2})f_{\perp}(E_{P}) \right]$$

$$f_{+}(q^{2}) = \frac{1}{\sqrt{2m_{B_{(s)}}}} \left[f_{\parallel}(E_{P}) + (m_{B_{(s)}} - E_{P})f_{\perp}(E_{P}) \right]$$

 $B \rightarrow \pi$

• Dominant uncertainties from statistics and chiral extrapolation.

z-expansion fit and Determination of $|V_{ub}|$

We use the BCL z-expansion fit to extrapolate lattice results to full kinematic range.

$$z = \frac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}}$$
$$t_{\pm} = (m_B \pm m_{\pi})^2$$

- Kinematic constraint: $f_{+}(0) = f_{\theta}(0)$
- heavy-quark power-counting: $\sum_{k=0}^{N} \left(a_{+}^{(k)}\right)^2 \sim \left(\frac{\Lambda}{m_b}\right)^3$

Now add experimental data to z-fit to obtain $|V_{ub}|$.

- q^2 dependence of lattice form factor agrees well with experiment.
- Error on normalization (and hence $|V_{ub}|$) saturates with 3-parameter *z*-fit.

$$|V_{ub}| = 3.61(32) \times 10^{-3}$$

Conclusions and future prospects

- We have calculated the B (B_s) meson decay constant and B → π (B_s → K) form factors using 2+1 flavor dynamical domain-wall fermion gauge field configurations with relativistic heavy quark action.
 N. H. Christ, et al. Phys. Rev. D91 (2015) 054502 J.M. Flynn et al. Phys. Rev. D91 (2015) 074510
- We show the preliminary results using RBC/UKQCD Möbius domain-wall + Iwasaki ensemble ($M_{\pi} \sim 139$ MeV).
- $|V_{ub}|$ is determined by combined z-fit with experimental data from Babar and Belle to about 9% precision.

Future prospect

- We are improving and checking our results using physical light quarks in order to reduce our chiral extrapolation error.
 - Work is in progress to increase statistics.
 - Include new data point in ChPT fit.
 - A new a^{-1} = 2.8 GeV ensemble is in production and we look forward to improve our continuum extrapolation.

