Improving our determinations of the decay constant f_{B} and the $B \rightarrow \pi l v$ semi-leptonic form factors using physical light quarks

Taichi Kawanai (Jülich Supercomputing Centre)
in collaboration with RBC-UKQCD

Motivation

B-physics calculations on the lattice are of great phenomenological importance.

- Constraints on the apex $(\bar{\rho}, \bar{\eta})$ of the CKM triangle will strengthen tests of the Standard Model in the quark-flavor sector.
- $V_{u b}$ from $B \rightarrow \pi l \boldsymbol{v}$ (yellow ring) from $B \rightarrow \boldsymbol{B} \boldsymbol{v} \quad$ (orange ring)
- $\boldsymbol{B}^{0}-\bar{B}^{0}$ mixing matrix elements (pink ring)
- B-physics allows us to identify new physics in rare B-decays.

- Both experimental results and calculating hadronic contribution are needed.
- The hadronic contribution must be computed nonperturbatively via lattice QCD.

$$
\text { Experiment + Lattice } \underset{2}{\rightarrow} \text { CKM matrix element }
$$

Exclusive determination of $\left|V_{u b}\right|$

$f_{+}\left(q^{2}\right)$ is crucial for the determination of the CKM matrix element $\left|V_{u b}\right|$.
B meson semileptonic decay

- The exclusive $B \rightarrow \pi l v$ semileptonic decay allows the determination of $\left|V_{u b}\right|$ via:

$$
\frac{d \Gamma}{d q^{2}}=\frac{G_{F}^{2}}{192 \pi^{3} m_{B_{(s)}}^{3}}\left[\begin{array}{c}
\left.\left(m_{B_{(s)}}^{2}+m_{P}^{2}-q^{2}\right)^{2}-4 m_{B_{(s)}}^{2} m_{P}^{2}\right]^{3 / 2} \\
\times\left|f_{+}\left(q^{2}\right)\right|^{2} \times\left|V_{u b}\right| \\
\text { Hadronic part factor CKM }
\end{array}\right.
$$

Experiment

- There has been a long standing puzzle in the determination of $\left|V_{u b}\right|$.
$\sim 3 \sigma$ discrepancy between exclusive ($B \rightarrow \pi l v$) and inclusive $\left(B \rightarrow X_{u} l v\right)$ determination.

New Physics in rare B-decays?

f_{B} and $f_{B s}$ are important to identify new physics in Rare \boldsymbol{B} decays.

- $\boldsymbol{B} \rightarrow \boldsymbol{\tau} \boldsymbol{v}$ decay
- f_{B} is needed for the Standard-Model prediction of $\mathrm{BR}(\boldsymbol{B} \rightarrow \boldsymbol{\tau} \boldsymbol{v})$
- Potentially sensitive to charged-Higgs exchange due to large T mass

- $\boldsymbol{B}_{s} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$decay
- $f_{B s}$ is needed for the Standard-Model prediction of $\operatorname{BR}\left(\boldsymbol{B}_{s} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}\right)$
- Strong sensitivity to NP because FCNC processes are suppressed by the Glashow-lliopoulos-Maiani (GIM)-mechanism in the Standard-Model.

Higher-order flavor changing neutral current processes for the $\boldsymbol{B}_{\boldsymbol{s}} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$decay allowed in the SM.

Our B-project

- $\boldsymbol{g}_{\boldsymbol{B}} * \boldsymbol{B} \boldsymbol{\pi}$ Coupling constat J.M. Flynn et al. [arXiv:1506.06413]
- Decay constant f_{B} and $f_{B S}$ J.M. Flynn et al. Phys. Rev. D91 (2015) 074510

- $B \rightarrow \pi l v$ semileptonic decay
N. H. Christ, et al. Phys. Rev. D91 (2015) 054502

- Neutral B meson mixing

- Rear semileptonic decay e.g. $B \rightarrow K^{*} l^{+} l^{-}$

Our B-project

- $\boldsymbol{g}_{\boldsymbol{B}} * \boldsymbol{B} \boldsymbol{\pi}$ coupling constat J.M. Flynn et al. [arXiv:1506.06413]

This talk by T.K.

- Decay constant f_{B} and $f_{B S}$ J.M. Flynn et al. Phys. Rev. D91 (2015) 074510

- $B \rightarrow \pi l v$ semileptonic decay
N. H. Christ, et al. Phys. Rev. D91 (2015) 05450

Next to next talk by O.Witzel

- Neutral B meson mixing

Next talk by E. Lizarazo
\because Rear semileptonic decay e.g. $B \rightarrow K^{*} l^{+} l$

Lattice actions and setup

2+| flavor dynamical domain-wall fermion gauge field configurations

- We use the $2+1$ flavor dynamical domain-wall fermion gauge field configurations generated by the RBC/UKQCD Collaborations. C. Allton et al., Phys. Rev. D78, 114509 (2008) Y. Aoki et al., Phys.Rev. D83, 074508 (2011)

$L^{3} \times T$	$a[\mathrm{fm}]$	mud	$m s$	$m \pi[\mathrm{MeV}]$	\# of configs.	\# of sources
$32^{3} \times 64$	≈ 0.08	0.004	0.03	289	628	2
$32^{3} \times 64$	≈ 0.08	0.006	0.03	345	445	2
$32^{3} \times 64$	≈ 0.08	0.008	0.03	394	544	2
$24^{3} \times 64$	≈ 0.11	0.005	0.04	329	1636	1
$24^{3} \times 64$	≈ 0.11	0.01	0.04	422	1419	1

- For the b-quark we use the relativistic heavy quark (RHQ) action developed by Li, Lin, and Christ. N. H. Christ et al., Phys.Rev. D76, 074505 (2007), H.-W. Lin et al., Phys.Rev. D76, 074506 (2007)
- We use the nonperturbatively tuned parameters of the RHQ action.

Lattice actions and setup

2+ | flavor dynamical domain-wal| fermion gauge field configurations

- We use $O\left(\alpha_{s}\right.$ a improved current operator with factors computed by lattice PT.
C. Lehner arXiv:1211.4013
- We calculate the heavy-light current renormalization factor $Z_{V}{ }^{b l}$ using the mostly nonperturbative method.

$$
\begin{gathered}
\approx=1 \\
Z_{V \mu}^{b l}=\rho_{V}^{b l} \sqrt{2} Z_{V}^{b b} V_{V}^{l i l} \quad \text { compute } \\
\text { compute with I-loop mean-field } \\
\text { improved lattice PT }
\end{gathered}
$$

- $\boldsymbol{Z}_{V}{ }^{l l}$ obtained by the RBC/UKQCD collaborations by exploiting the fact $Z_{A}=Z_{V}$ for domain-wall fermions.
- $\boldsymbol{Z}_{\boldsymbol{V}}{ }^{\boldsymbol{b}}$ obtained from the matrix element of the $\boldsymbol{b} \rightarrow \boldsymbol{b}$ vector current between two $\boldsymbol{B} \boldsymbol{s}$ mesons.

Lattice actions and setup

Möbius domain-wall

+ Iwasaki ensemble ($M_{\pi} \sim 139 \mathrm{MeV}$)

We will show preliminary results with physical pions.

- RBC/UKQCD Möbius domain-wall+ Iwasaki ensemble ($M_{\pi} \sim 139 \mathrm{MeV}$).

RBC, UKQCD collaborations [Xiv:1411.7017]

- We generate I "exact" and 8I "sloppy" propagators on a each configuration.
- We use the all-mode-averaging (AMA) method E. Shintani [arXiv:1402.0244]

$L^{3} \times T$	$a[\mathrm{fm}]$	mud	ms	$m \pi[\mathrm{MeV}]$	\# of configs.
$48^{3} \times 96$	≈ 0.11	0.00078	0.0362	139	30

Decay constant

N. H. Christ, et al. Phys. Rev. D91 (2015) 054502

\boldsymbol{B}-meson decay constat

$O\left(\alpha_{\mathrm{s}} a\right)$ improved axial current operator

- On lattice, we compute decay amplitude Φ_{B}

$$
\begin{aligned}
& \Phi_{B_{d}}^{\mathrm{eff}}=\sqrt{2} \lim _{t_{0} \ll t} \frac{C_{A P}\left(t, t_{0}\right)}{\sqrt{C_{P P}\left(t, t_{0}\right)}} \\
& f_{B}=Z_{\Phi} \Phi_{B_{q}}^{\mathrm{eff}} a^{-3 / 2} / \sqrt{M_{B_{q}}}
\end{aligned}
$$

Perform analysis in terms of dimensionless ratios over $M_{B s}$

Chiral-continuum extrapolation of f_{B}

- NLO SU(2) HMXPT to data with unitary M_{π}
- $\boldsymbol{g}_{B * B \pi}=0.57(8), \boldsymbol{f}_{\pi}=130.4 \mathrm{MeV}, \Lambda_{k}=1 \mathrm{GeV}$
- Only data points with filled symbols included in the fit $\left(M_{\pi}<450 \mathrm{MeV}\right)$
- Statistical errors only

Continuum extrapolation of $f_{B s}$

- No sea-quark mass dependence in Φ_{Bs}
- Average data at same lattice spacing
- Statistical errors only

Error budgets and Comparison with other results

- Dominant uncertainties from statistics and chiral extrapolation.

- Good agreement with other results.

Semileptonic decay form factor

J.M. Flynn et al. Phys. Rev. D91 (2015) 074510

Form-factor definitions

- Non-perturbative form factors $f_{+}\left(q^{2}\right)$ and $f_{0}\left(q^{2}\right)$ parametrize the hadronic matrix element of the $b \rightarrow u$ quark flavor-changing vector current V_{μ}.

$$
\langle P| V_{\mu}\left|B_{(s)}\right\rangle=f_{+}\left(q^{2}\right)\left(p_{B_{(s)}}^{\mu}+p_{P}^{\mu}-\frac{m_{B_{(s)}}^{2}-p_{P}^{2}}{q^{2}} q^{\mu}\right)+f_{0}\left(q^{2}\right) \frac{m_{B_{(s)}}^{2}-p_{P}^{2}}{q^{2}} q^{\mu}
$$

- On the lattice, we calculate the form factors $f_{\|}$and f_{\perp}.
- Proportional to vector current matrix elements in the $B_{(s)}$ meson rest frame:

$$
\begin{aligned}
f_{\|}\left(E_{P}\right) & =\langle P| V_{0}\left|B_{(s)}\right\rangle / \sqrt{2 m_{B_{(s)}}} \\
f_{\perp}\left(E_{P}\right) p_{i} & =\langle P| V_{i}\left|B_{(s)}\right\rangle / \sqrt{2 m_{B_{(s)}}}
\end{aligned}
$$

- Easy to relate to the desired form factor $f_{+}\left(q^{2}\right)$ and $f_{0}\left(q^{2}\right)$.

$$
\begin{aligned}
f_{0}\left(q^{2}\right) & =\frac{\sqrt{2 m_{B_{(s)}}}}{m_{B_{(s)}}^{2}-m_{P}^{2}}\left[\left(m_{B_{(s)}}-E_{P}\right) f_{\|}\left(E_{P}\right)+\left(E_{P}^{2}-m_{P}^{2}\right) f_{\perp}\left(E_{P}\right)\right] \\
f_{+}\left(q^{2}\right) & =\frac{1}{\sqrt{2 m_{B_{(s)}}}}\left[f_{\|}\left(E_{P}\right)+\left(m_{B_{(s)}}-E_{P}\right) f_{\perp}\left(E_{P}\right)\right]
\end{aligned}
$$

Calculation of lattice form factors

- Extract the lattice form factor from the ratio of the $3 p t$ function to $2 p t$ functions:
J. A. Bailey et al. (Fermilab Lattice and MILC), Phys. Rev. D79, 054507 (2009).

$$
\begin{aligned}
R_{3, \mu}^{B_{(s)} \rightarrow P}(t, T) & =\frac{C_{3, \mu}^{B_{(s)} \rightarrow P}(t, T)}{\sqrt{C_{2}^{P}(t) C_{2}^{B_{(s)}}(T-t)}} \sqrt{\frac{2 E_{P}}{e^{-E_{P} t} e^{-m_{B_{(s)}}(T-t)}}} \\
f_{\|}^{\text {lat }} & =\lim _{t, T \rightarrow \infty} R_{0}^{B_{(s)} \rightarrow P}(t, T) \\
f_{\perp}^{\text {lat }} & =\lim _{t, T \rightarrow \infty} \frac{1}{p_{P}^{i}} R_{i}^{B_{(s)} \rightarrow P}(t, T)
\end{aligned}
$$

Three-point correlator fits

- We use the lattice data up to $(1,1,1)$ for $B \rightarrow \pi$ and $(2,0,0)$ for $B_{s} \rightarrow K$.
- After a careful study, we fix source-sink separations T - t_{0}
- We fit the ratio to a plateau in the region $0<t \ll T$.

Three-point correlator fits

\bullet RBC/UKQCD Möbius domain-wall+ Iwasaki ensemble ($M_{\pi} \sim 139 \mathrm{MeV}$).

Chiral-continuum extrapolations of $f_{\|}$and f_{\perp}

Black curves show chiral-continuum extrapolation using Hard-pion NLO SU(2) χ PT.

Chiral-continuum extrapolations of $f_{\| \mid}$and f_{\perp}

Black curves show chiral-continuum extrapolation using Hard-pion NLO SU(2) χ PT.

f_{+}and f_{0}

$$
\begin{aligned}
f_{0}\left(q^{2}\right) & =\frac{\sqrt{2 m_{B_{(s)}}}}{m_{B_{(s)}}^{2}-m_{P}^{2}}\left[\left(m_{B_{(s)}}-E_{P}\right) f_{\|}\left(E_{P}\right)+\left(E_{P}^{2}-m_{P}^{2}\right) f_{\perp}\left(E_{P}\right)\right] \\
f_{+}\left(q^{2}\right) & =\frac{1}{\sqrt{2 m_{B_{(s)}}}}\left[f_{\|}\left(E_{P}\right)+\left(m_{B_{(s)}}-E_{P}\right) f_{\perp}\left(E_{P}\right)\right]
\end{aligned}
$$

Error budgets

- Dominant uncertainties from statistics and chiral extrapolation.

z-expansion fit and Determination of $\left|V_{u b}\right|$

We use the $B C L z$-expansion fit to extrapolate lattice results to full kinematic range.

$$
\begin{aligned}
& z=\frac{\sqrt{t_{+}-q^{2}}-\sqrt{t_{+}-t_{0}}}{\sqrt{t_{+}-q^{2}}+\sqrt{t_{+}-t_{0}}} \\
& t_{ \pm}=\left(m_{B} \pm m_{\pi}\right)^{2}
\end{aligned}
$$

- Kinematic constraint: $\boldsymbol{f}_{+}(0)=\boldsymbol{f}_{0}(0)$
- heavy-quark power-counting: $\sum_{k=0}^{N}\left(a_{+}^{(k)}\right)^{2} \sim\left(\frac{\Lambda}{m_{b}}\right)^{3}$

Now add experimental data to z-fit to obtain $\left|V_{u b}\right|$.

- q^{2} dependence of lattice form factor agrees well with experiment.
- Error on normalization (and hence $\left|V_{u b}\right|$) saturates with 3 -parameter z-fit.

$$
\left|V_{u b}\right|=3.61(32) \times 10^{-3}
$$

Conclusions and future prospects

- We have calculated the $B\left(B_{s}\right)$ meson decay constant and $B \rightarrow \pi\left(B_{s} \rightarrow K\right)$ form factors using $2+1$ flavor dynamical domain-wall fermion gauge field configurations with relativistic heavy quark action.
- We show the preliminary results using

$$
\text { RBC/UKQCD Möbius domain-wall + Iwasaki ensemble (} \left.M_{\pi} \sim 139 \mathrm{MeV}\right) .
$$

- $\left|V_{u b}\right|$ is determined by combined z-fit with experimental data from Babar and Belle to about 9\% precision.

Future prospect

- We are improving and checking our results using physical light quarks in order to reduce our chiral extrapolation error.
- Work is in progress to increase statistics. - Include new data point in ChPT fit.

- A new $\boldsymbol{a}^{-1}=2.8 \mathrm{GeV}$ ensemble is in production and

