BB mixing

outlook 00

$B - \overline{B}$ mixing with domain-wall light quarks and relativistic *b*-quarks

Oliver Witzel Higgs Centre for Theoretical Physics

Kobe, July 17, 2015

otivation	actions	$B\overline{B}$ mixing	outlook
000	0000	000000	00

Motivation: CKM unitarity triangle fit

http://utfit.roma1.infn.it, http://ckmfitter.in2p3.fr, http://www.latticeaverages.org

motivation
0000

BB mixing

outlook 00

Motivation: $B^0 - \overline{B^0}$ mixing

Dominant contribution in SM: box diagram with top quarks

Allows us to determine the CKM matrix elements

motivation
0000

BB mixing

outlook

Motivation: $B^0 - \overline{B^0}$ mixing

Conventionally parametrized by

$$\frac{|V_{td}^* V_{tb}| \text{for} B_d - \text{mixing}}{|V_{ts}^* V_{tb}| \text{for} B_s - \text{mixing}} \Delta M_q = \frac{G_F^2 m_W^2}{6\pi^2} \eta_B S_0 M_{B_q} f_{B_q}^2 B_{B_q} |V_{tq}^* V_{tb}|^2$$

- ► Nonperturbative contribution: $f_q^2 B_{Bq}$ ► Define the SU(3) breaking ratio $\xi^2 = f_{B_s}^2 B_{B_s} / f_{B_d}^2 B_{B_d}$
- CKM matrix elements are extracted by

$$\frac{\Delta M_s}{\Delta M_d} = \frac{M_{B_s}}{M_{B_d}} \xi^2 \frac{|V_{ts}|^2}{|V_{td}|^2}$$

► Experimental error of ΔM_q is better than a percent lattice uncertainty for ξ is about 3%

motivation
0000

BB mixing

outlook

Published results

► Fermilab/MILC (2+1 flavor), HPQCD (2+1+1 flavor), and RBC (2+1 flavor, static) are working on updates

motivation
0000

 $B\overline{B}$ mixing

Our Project

- Use domain-wall light quarks and nonperturbatively tuned relativistic b-quarks to compute at few-percent precision
 - ▶ $B^0 \overline{B^0}$ mixing (T. Kawanai, O.W.)
 - ▶ Decay constants f_B and f_{B_s} (R. Van de Water, O.W.) [PRD 91 (2015) 054502]
 - $B
 ightarrow \pi \ell
 u$ and $B_s
 ightarrow K \ell
 u$ form factors (T. Kawanai) [PRD 91 (2015) 074510]
 - ► $g_{B^*B\pi}$ coupling constant (B. Samways) [arXiv:1506.06413]
 - ▶ Rare *B* decays (E. Lizarazo)
- f_B , f_{B_s} , and semi-leptonic form factors
 - \triangleright O(a) improvement at 1-loop and mostly nonperturbative renormalization
 - ▶ Correction factors and coefficients computed at 1-loop (C. Lehner)
- ► B mixing
 - ▶ Tree-level O(a) improvement
 - Perturbative or mostly nonperturbative renormalization

otivation	actions	BB mixing	outlook
000	0000	000000	00

2+1 Flavor Domain-Wall Gauge Field Configurations

▶ Domain-wall fermions for the light quarks (u, d, s) with $M_{\pi} > M_{\pi}^{\text{phys}}$ [Kaplan PLB 288 (1992) 342], [Shamir NPB 406 (1993) 90]

▶ Möbius DWF for new ensembles with $M_{\pi} pprox M_{\pi}^{
m phys}$

[Brower et al. 2004],[Brower et al. 2012]

m

- Iwasaki gauge action [Iwasaki UTHEP (1983) 118]
- ▶ Configurations generated by RBC and UKQCD collaborations

motivation	actions	BB mixing	outlook
0000	0000	000000	00

2+1 Flavor Domain-Wall Iwasaki ensembles

Lá	a ^{−1} (GeV) am _l	am _s	$M_{\pi}({ m MeV})$	# configs.	#source	S
24 24	1.785 1.785	0.005	0.040	338 434	1636 1419	1 1	[PRD 78 (2008) 114509]
32	2.383	0.004	0.030	301	628	2	[PRD 83 (2011) 074508]
32	2.383	0.008	0.030	302 411	889 544	2	[PRD 83 (2011) 074508] [PRD 83 (2011) 074508]
48 64	1.730 2.359	0.00078 0.000678	0.0362 0.02661	139 139	40	81/1*	[arXiv:1411.7017] [arXiv:1411.7017]
48	~ 2.8			~230	??		[in production]

* All mode averaging: 81 "sloppy" and 1 "exact" solve [Blum et al. 2012]

▶ Lattice spacing determined from combined analysis [arXiv:1411.7017]

 \blacktriangleright a: ~ 0.11 fm, ~ 0.08 fm, ~ 0.07 fm

Relativistic Heavy Quark Action for the *b*-Quarks

- Relativistic Heavy Quark action developed by Christ, Li, and Lin [Christ e t al. PRD 76 (2007) 074505], [Lin and Christ PRD 76 (2007) 074506]
- Allows to tune the three parameters (m₀a, c_P, ζ) nonperturbatively [PRD 86 (2012) 116003]
- Builds upon Fermilab approach [EI-Khadra et al. PRD 55 (1997) 3933] by tuning all parameters of the clover action non-perturbatively; close relation to the Tsukuba formulation [S. Aoki et al. PTP 109 (2003) 383]
- Heavy quark mass is treated to all orders in $(m_b a)^n$
- Expand in powers of the spatial momentum through $O(\vec{p}a)$
 - Resulting errors will be of $O(\vec{p}^2 a^2)$
 - Allows computation of heavy-light quantities with discretization errors of the same size as in light-light quantities
- Applies for all values of the quark mass
- Has a smooth continuum limit

motivation	actions	$B\overline{B}$ mixing	outlook
0000	0000	00000	00

 $B^0 - B^0$ mixing matrix element calculation

- Fix location of four-quark operator $t_{\mathcal{O}}$
- ▶ Vary location of *B*-mesons over time slices t_1 , $t_2 \le T/2$
- ► Need: one point-source light quark and one point-source heavy quark originating from operator location
- Project out zero-momentum component using a Gaussian sink
- ▶ Tree-level O(a)-improvement of operators via HQ field rotation
- \blacktriangleright We measured all five operators, but focus on \mathcal{O}_1 (Standard Model)

ation	actions	$B\overline{B}$ mixing	outlook
0	0000	00000	00

Data structure of 3-point functions

motiv

- ▶ Varying $1 \le t_1, t_2 \le T/2$ results in a $T/2 \times T/2$ matrix of measurements
 - $t_1 = t_2$ sits on the diagonal
 - $t_1 t_2 = k$ defines the k^{th} super-/sub-diagonal

For symmetry reasons super- and diagonals should be equal allowing us to symmetrize the matrix

vation	actions	$B\overline{B}$ mixing	outlook
00	0000	00000	00

Checking symmetry of our 3-point data

moti

• Compute ratios related to the bag parameter \hat{B}_{B_a}

$$R_{\mathsf{bare}}(t_1, t_2) = \frac{C_3^{\mathsf{sm-pt-sm}}(t_{\mathcal{O}}, t_1, t_2)}{\sqrt{C_2^{\mathsf{sm-sm}}(-t_1)C_2^{\mathsf{sm-sm}}(t_2)}} \cdot \frac{2M_{B_q}}{\sqrt{\mathsf{exp}(-M_{B_q}(-t_1+t_2))}}$$

▶ Data shown on $24^3 \times 64$, $m_l = 0.005$

• $m_x = m_l$ and close to the phys. strange quark

motivation	actions	BB mixing
0000	0000	000000

Overlaying ratios for different (off-)diagonals k

▶ Data points shown with small offsets, $m_x = 0.0343$

- Noise increases for large k
- Combining different k may help to smoothen the plateau / improve our signal

outlook

motivation	actions	BB mixing
0000	0000	000000

Comparing combined fits with different k_{max}

- ▶ Data points shown with small offsets, $m_x = 0.0343$
- Simultaneous, correlated fits varying t_{min} for fixed $t_{max} = 16$
- ▶ Open symbols indicate a *p*-value < 5%
- **•** Warning: adding more noisier off-diagonals fools the χ^2 /dof (*p*-value)

outlook

motivation	actions	$B\overline{B}$ mixing	outlook
0000	0000	000000	00

Extracting R_{bare} and ratios for different ensembles

Sorry, last night a poor in internet connection did not allow me to download the needed data.

motivation
0000

BB mixing

Conclusion

- Finally, $B \overline{B}$ mixing code is verified and ready for production
- Basic data analysis is sorted out
- Extracted mixing matrix elements look sensible
- Combined fits to different separations improve our estimates

Outlook

- Obtain renormalized bag parameters and corresponding ratios
- Compute mixing matrix elements for other ensembles
- ▶ Perform combined chiral-continuum extrapolation with 2(3) lattice spacings and in total 6(7) different light sea quark masses including physical pions
- ► After properly re-tuning the RHQ parameters

motivation	
0000	

BB mixing

Need for re-tune the RHQ parameters

► Originally we tuned the RHQ parameters using [Y. Aoki et al. (2008)]

$$a_{24}^{-1} = 1.729(25)$$
 GeV and $a_{24}m_s^{24} = 0.0348(11)$

▶ The tuning is performed in the B_s system with close-to-physical strange quark propagators $am_{s'} = 0.0343$ [PRD 86 (2012) 116003]

 \blacktriangleright To include the new 48³ ensemble (physical pions) we need up-to-date values:

$$a_{24}^{-1} = 1.7848(50) \text{ GeV} \neq a_{48}^{-1} = 1.7295(38) \text{ GeV}$$
 (both at $\beta = 2.13$)

- ▶ New analysis includes DSDR and MDWF ensembles as well as refined analysis strategy [arXiv:1411.7017]
- ► This requires to account for the change in the bare strange quark mass $a_{24}m_s = 0.03224(18)$