Heavy Domain Wall Fermions: The RBC and UKQCD charm physics program

Justus Tobias Tsang

RBC-UKQCD Collaborations

Granada

20 June 2017

THE UNIVERSITY of EDINBURGH

RBC-UKQCD Collaborations

BNL and RBRC Mattia Bruno Tomomi Ishikawa Taku Izubuchi Luchang Jin Chulwoo Jung Christoph Lehner Meifeng Lin Hiroshi Ohki Shigemi Ohta (KEK) Amarjit Soni Sergey Syritsyn Columbia University Ziyuan Bai Norman Christ Duo Guo Christopher Kelly Bob Mawhinney David Murphy Masaaki Tomii

Jigun Tu **Bigeng Wang Tianle Wang** University of Connecticut Tom Blum Dan Hoying Cheng Tu Edinburgh University Peter Boyle Guido Cossu Luigi Del Debbio Richard Kenway Julia Kettle Ava Khamseh Brian Pendleton Antonin Portelli **Tobias Tsang Oliver Witzel** Azusa Yamaguchi

<u>K.E.K.</u> Julien Frison

University of Liverpool Nicolas Garron

Peking University Xu Feng

University of Southampton Jonathan Flynn Vera Gülpers James Harrison Andreas Jüttner Andrew Lawson Edwin Lizarazo Chris Sachrajda

York University (Toronto) Renwick Hudspith

э

<ロ> <同> <同> < 同> < 同>

2 Set-Up 1 - charm • f_D , f_{D_s} and f_{D_s}/f_D • ξ • m_c

- Set-Up 2 pushing further
 First results
- Aside: Combined Analysis of JLQCD + RBC/UKQCD data
- 5 Summary and Outlook

Motivation - Flavour Physics

CKMfitter Group (J. Charles et al.), Eur. Phys. J. C41, 1-131 (2005) [hep-ph/0406184], updated results and plots available at: http://ckmfitter.in2p3.fr

Experimental decay rate

Experiment

- Belle, BaBar, CLEO-c
- LHCb, Belle II

Theory

- *K*, *D* and *B* physics to test unitarity of the CKM matrix.
- \Rightarrow Place tight bounds on SM predictions

 $\Gamma_{\text{exp.}} = V_{CKM} \times (weak + em) \times (strong) [+ \mathcal{O}(\alpha_{EM})]$

- Decay constants f_D , f_{D_s}
 - \Rightarrow Access $|V_{cd}|, |V_{cs}|$
 - \Rightarrow First test for Heavy-DWF

- Decay constants f_D , f_{D_s} \Rightarrow Access $|V_{cd}|$, $|V_{cs}|$ \Rightarrow First test for Heavy-DWF
- Neutral meson mixing: Bag parameters and ξ
 - \Rightarrow Access $|V_{td}/V_{ts}|$

- Decay constants f_D , f_{D_s} \Rightarrow Access $|V_{cd}|$, $|V_{cs}|$ \Rightarrow First test for Heavy-DWF
- Neutral meson mixing: Bag parameters and ξ
 - \Rightarrow Access $|V_{td}/V_{ts}|$
- charm quark mass m_c
 - \Rightarrow Input for further simulations

- Decay constants f_D , f_{D_s} \Rightarrow Access $|V_{cd}|$, $|V_{cs}|$ \Rightarrow First test for Heavy-DWF
- Neutral meson mixing: Bag parameters and ξ
 - \Rightarrow Access $|V_{td}/V_{ts}|$
- charm quark mass m_c
 - \Rightarrow Input for further simulations
- charm contribution to HVP

- Decay constants f_D , f_{D_s} \Rightarrow Access $|V_{cd}|$, $|V_{cs}|$ \Rightarrow First test for Heavy-DWF
- Neutral meson mixing: Bag parameters and ξ
 - \Rightarrow Access $|V_{td}/V_{ts}|$
- charm quark mass m_c
 - \Rightarrow Input for further simulations
- charm contribution to HVP
- Semi-leptonic decays
 - \Rightarrow Access $|V_{cd}|$, $|V_{cs}|$

Motivation: Domain Wall Fermions

DWFs provide a method to simulate (approximately) chiral fermions on the lattice at the expense of a fifth dimension

- \Rightarrow Automatic $\mathcal{O}(a)$ improvement
- \Rightarrow No operator mixing:
 - \Rightarrow easier renormalisation
- ⇒ Additional parameters L_s and M_5 : M_5 only affects UV behaviour: ⇒ use to reduce discretisation effects?
 - \Rightarrow use to reduce discretisation effective

BUT:

• More expensive due to fifth dimension

Heavy Domain Wall Fermion Set-up

- Scan parameter space for good action for heavy quarks.
- Keep light and strange unitary ($M_5 = 1.8$)

Quenched Pilot Study: JHEP 05 (2015) 072 JHEP 04 (2016) 037

- Good chiral properties and O(a)-improvement
- Find flat CL for modification of DW param's for charm: M₅ = 1.6 and am_b ≤ 0.4

 $\Rightarrow \textbf{Mixed action}$

RBC/UKQCD Ensembles

- $N_f = 2 + 1$ Domain Wall Fermions
- 2 ensembles with physical pion masses
- 3 Lattice spacings

Technical slide - Sources and Statistics

- \mathbb{Z}_2 -Wall sources
- placed on many source planes
- binned into one effective measurements per config

Name	hits/conf	confs	total	
C0	48	88	4224	
C1	32	100	3200	
C2	32	101	3232	
M0	32	80	2560	
M1	32	83	2656	
M2	16	77	1232	
F1	48	82	3936	

Technical slide - Sources and Statistics

- \mathbb{Z}_2 -Wall sources
- placed on many source planes
- binned into one effective measurements per config
- strange quark mass slightly mistuned on some ensembles

Name	$\mathit{am_s^{phys}}$	$\mathit{am}^{\mathrm{sim}}_{s}$		
C0	0.03580(16)	0.0362		
C1	0.03224(18)			
C2	0.03224(18)			
M0	0.02539(17)	0.02661		
M1	0.02477(18)			
M2	0.02477(18)			
F1	0.02132(17)	0.02144		

$$\Gamma_{exp.} = V_{CKM} \times (weak + em) \times (strong) [+O(\alpha_{EM})]$$

э

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

$$\Gamma_{exp.} = V_{CKM} \times (weak + em) \times (strong) \quad [+\mathcal{O}(\alpha_{EM})]$$

Leptonic decays

$$\mathcal{B}(D_{(s)} \rightarrow l \bar{
u}_l) = |V_{cq}|^2 \mathcal{K}(m_l, m_{D_q}) f_{D_q}^2, \qquad q = d, s$$

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

э

$$\Gamma_{exp.} = V_{CKM} \times (weak + em) \times (strong) \quad [+\mathcal{O}(\alpha_{EM})]$$

Leptonic decays

$$\mathcal{B}(D_{(s)} \rightarrow l \bar{
u}_l) = |V_{cq}|^2 \mathcal{K}(m_l, m_{D_q}) f_{D_q}^2, \qquad q = d, s$$

If we can determine the strong contribution independently we can make predictions for $|V_{CKM}|$.

→ Ξ →

$$\Gamma_{exp.} = V_{CKM} \times (weak + em) \times (strong) \quad [+\mathcal{O}(\alpha_{EM})]$$

Leptonic decays

$$\mathcal{B}(D_{(s)} \rightarrow l \bar{\nu}_l) = |V_{cq}|^2 \mathcal{K}(m_l, m_{D_q}) f_{D_q}^2, \qquad q = d, s$$

If we can determine the strong contribution independently we can make predictions for $|V_{CKM}|$.

Lattice calculation

$$\mathcal{Z}_{A}\left\langle 0 \left| \, \overline{c} \gamma_{4} \gamma_{5} q \, \left| D_{q}(0)
ight
angle = rac{ f_{D_{q}} m_{D_{q}}, \qquad q=d,s$$

/□ ▶ < 글 ▶ < 글

Decay constants - arXiv:1701.02644 - Correlator fits

Uncorrelated simultaneous two-exponential fit to $\langle PP \rangle$ and $\langle AP \rangle$ channels for D_s at $am_h = 0.34$ on M0.

Decay constants - arXiv:1701.02644 - Correlator fits

Uncorrelated simultaneous two-exponential fit to $\langle PP \rangle$ and $\langle AP \rangle$ channels for D_s at $am_h = 0.34$ on M0.

Variation of t_{\min} and t_{\max} .

Decay constants - arXiv:1701.02644 - Data

$$egin{aligned} \mathcal{O}(a,m_l,m_h) &= \mathcal{O}(0,m_l^{
m phys},m_h^{
m phys}) + \left(C_{CL}^0 + C_{CL}^1\,\Delta m_{P_h}^{-1}
ight) \,\,a^2 \ &+ \,C_\chi^0\,\Delta m_\pi^2 + C_{P_h}^0\,\Delta m_{P_h}^{-1} \end{aligned}$$

$$\Phi_P = f_P \sqrt{m_P}$$

э

3

- Mixed action renormalisation: $\left|1 rac{\mathcal{Z}_A(M_5=1.8)}{\mathcal{Z}_A(M_5=1.6)}\right| < 0.5\%$
- Variations of fit ansatz and pion cuts to determine systematics
- Different ways to fix charm $(D(\diamond), D_s(\bigcirc), \text{ and } \eta_c(\Box))$

Decay constants - arXiv:1701.02644 - Results

Plots inspired by FLAG III [arXiv:1607.00299]

$$\begin{split} f_D &= 208.7(2.8)_{\rm stat} (^{+2.1}_{-1.8})_{\rm sys} \,{\rm MeV} & |V_{cd}| = 0.2185(50)_{\rm exp} (^{+35}_{-37})_{\rm lat} \\ f_{D_s} &= 246.4(1.3)_{\rm stat} (^{+1.3}_{-1.9})_{\rm sys} \,{\rm MeV} & |V_{cs}| = 1.011(16)_{\rm exp} (^{+4}_{-9})_{\rm lat} \end{split}$$

(日) (同) (三) (三)

Neutral Meson Mixing

 $\Delta m_q = |V_{tq}^* V_{tb}|^2 \times \mathcal{K} \times \mathcal{M}_q$

æ

글 > - < 글 >

Neutral Meson Mixing

$$\Delta m_{q} = |V_{tq}^{*}V_{tb}|^{2} \times \mathcal{K} \times \mathcal{M}_{q}$$
$$\mathcal{M}_{q} = \langle \bar{B}_{q}^{0} | [\bar{b}\gamma^{\mu}(1-\gamma_{5})q] [\bar{b}\gamma^{\mu}(1-\gamma_{5})q] |B_{q}^{0}\rangle$$

イロン イロン イヨン イヨン

æ

Neutral Meson Mixing

$$\begin{split} \Delta m_{q} &= |V_{tq}^{*}V_{tb}|^{2} \times \mathcal{K} \times \mathcal{M}_{q} \\ \mathcal{M}_{q} &= \left\langle \bar{B}_{q}^{0} \right| \left[\bar{b}\gamma^{\mu}(1-\gamma_{5})q \right] \left[\bar{b}\gamma^{\mu}(1-\gamma_{5})q \right] \left| B_{q}^{0} \right\rangle \\ &= \left\langle \bar{B}_{q}^{0} \right| O_{VV+AA} \left| B_{q}^{0} \right\rangle \end{split}$$

イロン イロン イヨン イヨン

æ

Ratio of Bag parameters ξ (1511.09328)

STATUS:

- Data at charm: percent level precision
- Mild heavy mass dependence
- More data on disk + many src/snk separations

Ratio of Bag parameters ξ (1511.09328)

PLAN:

- Renormalisation of mixed action for Bag parameters.
- Analyse further data and add to global fit
- Extrapolate to B

Charm quark mass

Definitions and coefficients from 1208.4412 and 1411.7017

- \Rightarrow Determine $m_c(a)$ from m_{η_c} (or m_{D_s})
- $\Rightarrow\,$ Renormalisation of mixed action still ongoing
 - \Rightarrow Currently use $Z_m(M_5 = 1.8)$

Charm quark mass

Current Limitations

Problems

 $\bullet \ \textit{am}_{\textit{h}}^{\max} < \textit{am}_{\textit{c}}^{\mathrm{phys}}$ on Coarse

æ

A B > A B >

Current Limitations

Problems

• Poor Signal-to-noise for $m_{\pi}=139 {
m MeV}$ and $m_{h}\gtrsim m_{c}^{
m phys}$

- 4 同 6 4 日 6 4 日 6

э

Current Limitations

Problems

- $\mathit{am}_{h}^{\max} < \mathit{am}_{c}^{\mathrm{phys}}$ on Coarse
- Poor Signal-to-noise for $m_{\pi}=139 {
 m MeV}$ and $m_{h}\gtrsim m_{c}^{
 m phys}$

Solutions?

- Stout Smeared charm
- Gaussian Smearing for source + sink

Stout Smearing

Found sweet-spot for

- $M_5 = 1.0$
- 3 hits of stout smearing
- Standard Stout parameter $\rho = 0.1$

Conclusion

- $\Rightarrow\,$ Gaussian smearing of light and strange
- \Rightarrow Stout smearing of heavy quarks

$$\Rightarrow am_h \lesssim 0.7$$

First results with smeared action

First Data (Limited statistic)

Comments

- Reach physical charm quark mass on all ensembles
- More data soon
- Renormalisation in progress
- Physics program: decay constants, semi-leptonics, bag parameters, ξ, HVP
- Push towards b.

Combined Data from JLQCD and RBC/UKQCD

in collaboration with Guido Cossu, Brendan Fahy, Shoji Hashimoto

Combine data sets for well controlled chiral and continuum limit.

Ongoing Work: JLQCD + UKQCD - data

RBC/UKQCD data set

Ongoing Work: JLQCD + UKQCD - data

э

Ongoing Work: JLQCD + UKQCD - data

э

Ongoing Work: JLQCD + UKQCD - plans

- Data on both sides of charm
- Global fit with universality constraint is ongoing. First try:

$$\begin{aligned} \mathcal{O}_{i}(a, m_{l}, m_{h}) &= \mathcal{O}(0, m_{l}^{\mathrm{phys}}, m_{h}^{\mathrm{phys}}) \\ &+ C_{\chi} \Delta m_{\pi}^{2} + C_{H} \Delta m_{H}^{-1} \\ &+ \left(C_{CL}^{UK} \delta_{UK,i} + C_{CL}^{KEK} \delta_{KEK,i} \right) a^{2} \\ &+ C_{K} \Delta (2 m_{K}^{2} - m_{\pi}^{2}) \end{aligned}$$

- $\bullet\,$ Can include data with $\mathit{am_s} \neq \mathit{am_s^{\rm phys}}$ without corrections
- Include new smeared RBC/UKQCD data

Conclusions and Outlook

DONE

Established HDWF

 DWF as heavy quark discretisation:

 $M_5=1.6,~am_h\lesssim 0.4$

- JHEP 05 (2015) 072
 JHEP 04 (2016) 037
- Good Continuum Scaling
- $N_f = 2 + 1$: f_D , f_{D_s} with competitive precision (arXiv:1701.02644)
- 3 lattice spacings, 2 physical pion mass ensembles.

Conclusions and Outlook

DONE

Established HDWF

• DWF as heavy quark discretisation:

 $M_5=1.6,~am_h\lesssim 0.4$

- JHEP 05 (2015) 072
 JHEP 04 (2016) 037
- Good Continuum Scaling
- $N_f = 2 + 1$: f_D , f_{D_s} with competitive precision (arXiv:1701.02644)
- 3 lattice spacings, 2 physical pion mass ensembles.

ONGOING

Analysis underway

- Determination of m_c
- Bag parameters, ξ
- JLQCD+UKQCD
- reach beyond *c* with Kernel Smearing
- charm contribution to HVP

Conclusions and Outlook

DONE

Established HDWF

• DWF as heavy quark discretisation:

 $M_5=1.6,~am_h\lesssim 0.4$

- JHEP 05 (2015) 072
 JHEP 04 (2016) 037
- Good Continuum Scaling
- $N_f = 2 + 1$: f_D , f_{D_s} with competitive precision (arXiv:1701.02644)
- 3 lattice spacings, 2 physical pion mass ensembles.

ONGOING

Analysis underway

- Determination of m_c
- Bag parameters, ξ
- JLQCD+UKQCD
- reach beyond *c* with Kernel Smearing
- charm contribution to HVP

Data in Production

- beyond *c*
- semi-leptonics
- NPR for smeared kernel

- 4 同 6 4 日 6 4 日 6

ADDITIONAL SLIDES

э

obs	val	× stat	s/s 10 ⁴	fit	FV	h.o. CL	^p m ≠ ⁿ m 10 ⁴	ren	ms
$\Phi_D [\text{GeV}^{3/2}]$	0.2853	38	+29 -24	$+24 \\ -18$	10	-	4.7	11	-
$\Phi_{D_s} [{\rm GeV}^{3/2}]$	0.3457	26	$^{+18}_{-26}$	$+ 3 \\ -19$	6	7	4.4	14	0.9
f_{D_s}/f_D	1.1667	77	+57 -43	+44 -23	35	-	8	-	3

Systematic error budget for decay constants (arXiv:1701.02644)

 \Rightarrow Parameterise mistuning in terms of dimensionless α :

$$\mathcal{O}^{\mathrm{phys}} = \mathcal{O}^{\mathrm{uni}} \left(1 + \alpha_{\mathcal{O}} \frac{m_{s}^{\mathrm{phys}} - m_{s}^{\mathrm{uni}}}{m_{s}^{\mathrm{phys}}} \right)$$

 Calculate 2 values of m_s on C1 and M1

 \Rightarrow Parameterise mistuning in terms of dimensionless α :

$$\mathcal{O}^{\rm phys} = \mathcal{O}^{\rm uni} \left(1 + \alpha_{\mathcal{O}} \frac{m_s^{\rm phys} - m_s^{\rm uni}}{m_s^{\rm phys}} \right)$$

- Calculate 2 values of m_s on C1 and M1
- Extrapolate to F1 masses

 \Rightarrow Parameterise mistuning in terms of dimensionless α :

$$\mathcal{O}^{\rm phys} = \mathcal{O}^{\rm uni} \left(1 + \alpha_{\mathcal{O}} \frac{m_s^{\rm phys} - m_s^{\rm uni}}{m_s^{\rm phys}} \right)$$

- Calculate 2 values of m_s on C1 and M1
- Extrapolate to F1 masses
- Extrapolate to F1 lattice spacing

 \Rightarrow Parameterise mistuning in terms of dimensionless α :

$$\mathcal{O}^{\rm phys} = \mathcal{O}^{\rm uni} \left(1 + \alpha_{\mathcal{O}} \frac{m_s^{\rm phys} - m_s^{\rm uni}}{m_s^{\rm phys}} \right)$$

- Calculate 2 values of m_s on C1 and M1
- Extrapolate to F1 masses
- Extrapolate to F1 lattice spacing
- \Rightarrow Small correction

What happens at large input quark masses? Check residual mass

$$C_{m_{\rm res}}(t) = \frac{\left\langle \sum_{\mathbf{x}} J_{5q}^{a}(\mathbf{x}) P(0) \right\rangle}{\left\langle \sum_{\mathbf{x}} P(\mathbf{x}) P(0) \right\rangle}$$

- Expect plateau
- For $M_5 = 1.6$ mechanism seems to break down for $am_h \gtrsim 0.4$
- No longer simulating (approx.) chiral QCD

$N_f = 2 + 1$: Residual Mass

 $am_h^{\rm bare} \lesssim 0.4$

 $am_h^{\mathrm{bare}} \lesssim 0.7$

3

э

э