Neutral meson mixing and related observables in the $D_{(s)}$ and $B_{(s)}$ meson systems

Justus Tobias Tsang for the RBC-UKQCD Collaborations

based on arXiv:1812.08791

Wuhan, Lattice2019

18 June 2019

THE UNIVERSITY of EDINBURGH

RBC-UKQCD Collaborations

BNL and RBRC Yasumichi Aoki (KEK) Taku Izubuchi Yong-Chull Jang Chulwoo Jung Meifeng Lin Aaron Meyer Hiroshi Ohki Shigemi Ohta (KEK) Amarjit Soni

UC Boulder Oliver Witzel

<u>CERN</u> Mattia Bruno

<u>MIT</u> David Murphy

0/21

Peking University Xu Feng

Stony Brook University Jun-Sik Yoo Columbia University Ryan Abbot Norman Christ Duo Guo Christopher Kelly Bob Mawhinney Masaaki Tomii Jiqun Tu Bigeng Wang Tianle Wang Yidi Zhao

University of Connecticut Tom Blum Dan Hoying (BNL) Luchang Jin (RBRC) Cheng Tu University of Liverpool Nicolas Garron UoRegensburg (BNL)

Christoph Lehner

J Tobias Tsang (University of Edinburgh)

University of Edinburgh Peter Boyle Luigi Del Debbio Felix Erben Vera Gülpers Tadeusz Janowski Julia Kettle Michael Marshall Fionn Ó hÓgáin Antonin Portelli Tobias Tsang Andrew Yong Azusa Yamaguchi University of Southampton Nils Asmussen Jonathan Flynn Ryan Hill Andreas Jüttner James Richings Chris Sachrajda

소리 돈 소리 돈 소 글 돈 소 글 돈

- E|= - のへで

Neutral heavy meson mixing

Results for SU(3) breaking ratios (arXiv:1812.08791)

- ◆母 ▶ ◆臣 ▶ ◆臣 ▶ 三日 の Q @

Motivation for charm and bottom flavour physics

- Huge experimental efforts: LHC, Belle II, BES III, ...
- Constrain CKM unitarity by combining non-perturbative input with experimental data.
- Test CKM matrix by determining the same CKM matrix element from different processes
- Constrain BSM models
- Address lepton flavour universality (violations?)

Motivation for charm and bottom flavour physics

- Huge experimental efforts: LHC, Belle II, BES III, ...
- Constrain CKM unitarity by combining non-perturbative input with experimental data.
- Test CKM matrix by determining the same CKM matrix element from different processes
- Constrain BSM models
- Address lepton flavour universality (violations?)

Related RBC/UKQCD talks:

- Mon 15:40 F. Erben: "An exploratory study of heavy-light semi-leptonics using distillation"
- Mon 16:50 R. Hill: "Semi-leptonic B decays with RHQ b quarks"
- Poster O. Witzel:
 "Semi-leptonic form factors for exclusive B_s → Kℓν and B_s → D_sℓν decays"

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Flavour Physics and CKM: leptonic decay constants

Experiment $\approx CKM \times Lattice \times (PT+kinematics)$

Leptonic decays: $\Gamma(P \to \ell \nu_{\ell}) \approx |V_{q_2q_1}|^2 \times f_P^2 \times \text{known factors}$

where
$$\mathcal{Z}_A raket{0} \overline{c} \gamma_4 \gamma_5 q \ket{D_q(0)} = f_{D_q} m_{D_q}, \qquad q=d,s$$

[HFLAV+BESIII] $f_D |V_{cd}| = (45.9 \pm 1.1) \text{ MeV}, \quad f_{D_s} |V_{cs}| = (249.1 \pm 3.2) \text{ MeV}$ Computing f_{D_s}/f_D gives access to V_{cs}/V_{cd}

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● □ ● ● ●

Neutral meson mixing

Neutral mesons oscillate with their antiparticles:

 \Rightarrow Difference between mass eigenstates: Δm^{exp} measured to < 1%!

$$\Delta m \propto \underbrace{\left\langle B_{(s)}^{0} \middle| \mathcal{H}^{\Delta b=2} \middle| \bar{B}_{(s)}^{0} \right\rangle}_{\text{Short distance}} + \underbrace{\sum_{n} \frac{m_{q}^{2}}{M_{W}^{2}} V_{qb} V_{ql}^{*}}_{\text{Long distance}} \Big|^{2} \approx \frac{m_{t}^{4}}{M_{W}^{4}} |V_{tb} V_{tl}^{*}|^{2}$$

 $m_t^2 V_{tb} V_{tl}^* \gg m_c^2 V_{cb} V_{cl}^* \gg m_u^2 V_{ub} V_{ul}^* \Rightarrow$ Short distance dominated.

Neutral heavy meson mixing

~

Operator Product Expansion

Two scale problem: $\Lambda_{\rm QCD} \sim 1 \,{
m GeV} \ll m_{EW} \sim 100 \,{
m GeV}$: \Rightarrow Factorise via OPE

$$\Delta m \propto \sum_{i} C_{i}(\mu) \left\langle B^{0}_{(s)} \middle| \mathcal{O}^{\Delta b=2}_{i}(\mu) \middle| \bar{B}^{0}_{(s)} \right\rangle$$

- Perturbative model-dependent Wilson coefficients $C_i(\mu)$
- Non-perturbative model-independent matrix elements of $\mathcal{O}_i^{\Delta b=2}(\mu)$
- 5 independent (parity even) operators \mathcal{O}_i .
- $\Rightarrow \mathsf{SM:} \ \mathcal{O}_1 = (\bar{b}_a \gamma_\mu (\mathbb{1} \gamma_5) q_a) (\bar{b}_b \gamma_\mu (\mathbb{1} \gamma_5) q_b) = \mathcal{O}_{VV+AA}$ $+ 4 \text{ BSM operators: } \mathcal{O}_2 - \mathcal{O}_5$

Operator Product Expansion

Two scale problem: $\Lambda_{\rm QCD} \sim 1 \, {\rm GeV} \ll m_{EW} \sim 100 \, {\rm GeV}$: \Rightarrow Factorise via OPE

$$\Delta m \propto \sum_{i} C_{i}(\mu) \left\langle B^{0}_{(s)} \middle| \mathcal{O}^{\Delta b=2}_{i}(\mu) \middle| \bar{B}^{0}_{(s)} \right\rangle$$

- Perturbative model-dependent Wilson coefficients $C_i(\mu)$
- Non-perturbative model-independent matrix elements of $\mathcal{O}_i^{\Delta b=2}(\mu)$
- 5 independent (parity even) operators \mathcal{O}_i .
- $\Rightarrow \mathsf{SM:} \ \mathcal{O}_1 = (\bar{b}_a \gamma_\mu (\mathbb{1} \gamma_5) q_a) (\bar{b}_b \gamma_\mu (\mathbb{1} \gamma_5) q_b) = \mathcal{O}_{VV+AA}$ $+ 4 \text{ BSM operators: } \mathcal{O}_2 - \mathcal{O}_5$

RBC/UKQCD's $K - \bar{K}$ BSM mixing calculation

P. Boyle, N. Garron, J. Hudspith, A. Jüttner, J. Kettle, A. Khamseh, C. Lehner, A. Soni, JTT [1812.04981 PoS Lat'18, in preparation]

Flavour Physics and CKM: neutral meson mixing

$$\Delta m_P = \left| V_{tq_2}^* V_{tq_1} \right| imes f_P^2 m_P \hat{B}_P imes$$
 known factors

[HFLAV]

$$\Delta m_d = 0.5064 \pm 0.0019 \,\mathrm{ps}^{-1}$$

 $\Delta m_s = 17.757 \pm 0.021 \,\mathrm{ps}^{-1}$

Computing ξ gives access to ratio V_{td}/V_{ts} :

$$\xi^2 = \frac{f_{B_s}^2 B_{B_s}}{f_B^2 B_B} = \left| \frac{V_{td}}{V_{ts}} \right|^2 \frac{\Delta m_s}{\Delta m_d} \frac{m_B}{m_{B_s}}$$

- ● ● ●

- ∢ ≣ ▶

= 200

RBC/UKQCD $N_f = 2 + 1$ ensembles

Chiral Fermions:

- $\Rightarrow O(a)$ improved
- \Rightarrow Multiplicative renormalisation

- Iwasaki gauge action
- Domain Wall Fermion action
 - \Rightarrow $N_f = 2 + 1$ flavours in the sea
 - \Rightarrow $M_5 = 1.8$ for light and strange
- 2 ensembles with physical pion masses [PRD 93 (2016) 074505]
- 3 Lattice spacings [JHEP 12 (2017) 008]
- Heavier m_{π} ensembles guide small chiral extrapolation of F1*

 * F1 properties under investigation but expect only minor effects

▲□ ▲ □ ▲ □ ▲ □ ■ □ ● ○ ○ ○

Neutral heavy meson mixing

Lattice set-up I

Light and strange

- Unitary light quark mass
- Physical strange quark mass
- DWF parameters same between sea and valence
- Gaussian source (sink) smearing for better overlap with ground state

Heavy (charm and beyond)

- Möbius DWF
- $M_5 = 1.0, L_s = 12$
- Stout smeared (3 hits, ho = 0.1)
- Range of quark masses from below charm to $\sim m_b/2$ on finest ensemble

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- \Rightarrow **All DWF** mixed action set-up
- $\Rightarrow \mathbb{Z}_2\text{-noise}$ sources (volume average) on every 2nd time slice
- \Rightarrow Increased heavy quark reach compared to [JHEP 04 (2016) 037, JHEP 12 (2017) 008]
 - ightarrow extrapolation towards b

Lattice setup II

Correlator Fitting - two point functions

Simultaneous two-exponential fit of 6 channels to extract masses and matrix elements of interest

Example fit of worst case: heavy-light meson with $am_h = 0.68$ on M0

Stability

Correlator Fitting of 4-quark operators I

- Expect $R(t, \Delta T)$ to plateau for large t
- Check stability of plateaux value by varying ΔT

A 10

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ = 𝒴 𝔄 𝔄 𝔅

Correlator Fitting of 4-quark operators II

Ex: $am_h = 0.68$ on M0

J Tobias Tsang (University of Edinburgh)

Neutral heavy meson mixing

Results of correlator fits

- \Rightarrow Renormalisation constants cancel
- \Rightarrow Mild linear behaviour with $1/m_H$ and a^2
- \Rightarrow Stat precision: 0.4 1.0 %

Results of correlator fits

Ratio of bag parameters

- \Rightarrow Renormalisation constants cancel
- \Rightarrow Mild linear behaviour with $1/m_H$ and a^2
- \Rightarrow Stat precision: 0.4 1.0 %

Global fit form

Base fit

 $O(a, m_\pi, m_H) = O(0, m_\pi^{\mathrm{phys}}, m_H^{\mathrm{phys}}) + C_{CL}a^2 + C_\chi \Delta m_\pi^2 + C_H \Delta m_H^{-1}$

Assess systematic errors by

- varying cuts on pion mass
- using $m_H = m_D$, m_{D_s} and m_{η_c}
- varying inclusion/exclusion of heaviest data points
- varying inclusion/exclusion of fit parameters
- including/estimating higher order terms $(a^4, (\Delta m_{\pi}^2)^2, (\Delta m_H^{-1})^2)$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● □ ● ● ●

 \Rightarrow Global fits are fully correlated.

Global fit results for ξ

$$O(a, m_\pi, m_H) = O(0, m_\pi^{\mathrm{phys}}, m_H^{\mathrm{phys}}) + C_{CL}a^2 + C_\chi \Delta m_\pi^2 + C_H \Delta m_H^{-1}$$

Ratio of decay constants for $m_{\pi} \leq 350 \, {
m MeV}$

= 9QC

Global fit results for ξ

$$O(a, m_\pi, m_H) = O(0, m_\pi^{\mathrm{phys}}, m_H^{\mathrm{phys}}) + C_{CL}a^2 + C_\chi \Delta m_\pi^2 + C_H \Delta m_H^{-1}$$

Ratio of decay constants for $m_\pi \leq 350 \, {
m MeV}$

ъ

Systematic Errors - variations of cuts to data for ξ

- Global fits all correlated with satisfying *p*-values.
- sys error: includes chiral-CL (left), heavy mass (right), H.O. terms, $m_u \neq m_d$ and FV.

$$\xi = 1.1853(54)_{
m stat} \left({}^{+116}_{-156}
ight)_{
m sys}$$

Comparison to literature - ratio of decay constants

- Self consistent with RBC/UKQCD17: JHEP 12 (2017) 008
- Complimentary to (most) literature no effective action for b.
- One of few results with physical pion masses.

$$|V_{cd}/V_{cs}| = 0.2148(56)_{
m exp} \left(^{+22}_{-10}
ight)_{
m lat}$$

= 990

Comparison to literature - ratio of mixing parameters

- Complimentary no effective action needed for b
- Complimentary no operator mixing!
- First time with physical pion masses

$$|V_{td}/V_{ts}| = 0.2018(4)_{exp} \begin{pmatrix} +20\\ -27 \end{pmatrix}_{lat}$$

< 17 ▶

(E)

= 9QQ

Next steps: Decay constants and bag parameters

- Different choice of (domain wall) action between light/strange and heavy quarks leads to a mixed action
- Mixed action renormalisation constants cancel for appropriate ratios $(f_{B_s}/f_B, B_{B_s}/B_B)$, but are needed for individual decay constants and bag parameters.
- Need to carry out the fully non-perturbative mixed action renormalisation as outlined in JHEP **12** (2017) 008.
- Extend the study to the full BSM operator basis \Rightarrow analogous to RBC/UKQCD's $K - \bar{K}$ study (1812.04981, in preparation)

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● □ ● ● ●

$B^0_{(s)} - ar{B}^0_{(s)}$ and $D^0 - ar{D}^0$ **PRELIMINARY** and **BARE**

- "quite linear" in m_H^{-1}
- similar slopes for h-l and h-s \Rightarrow SU(3) breaking rat's?

- renormalisation to be done (mixed action + op mixing)
- analogous analysis to $K \bar{K}$ paper + m_H dependence

-

Conclusions and Outlook

SU(3) breaking ratios

- arXiv:1812.08791
- f_{D_s}/f_D , f_{B_s}/f_B , B_{B_s}/B_B and ξ
- $|V_{cd}/V_{cs}|, |V_{td}/V_{ts}|$
- 3 lattice spacings. 2 $m_{\pi}^{\rm phys}$
- First result for ξ and $B_{B_{\epsilon}}/B_{B}$ with $m_{\pi}^{\rm phys}$
- m_h from below m_c to $\sim m_h/2$ \Rightarrow extrapolation to *b* for ratios \Rightarrow fully relativistic
- Good continuum scaling and self-consistent
- Competitive precision

Ongoing

- Mixed action renormalisation of bilinears and four quark operators underway
- First results look promising
- \Rightarrow Determine $f_{B_{(s)}}$, $f_{D_{(s)}}$
- \Rightarrow Extend to full mixing operator basis for $B_{(s)}$ and compute short distance part of D.

Outlook

 Supplement dataset with very fine JLQCD ensembles

•
$$a^{-1} = 2.8 \, {
m GeV}$$
, $m_{\pi} = m_{\pi}^{
m phys}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

J Tobias Tsang (University of Edinburgh)

ADDITIONAL SLIDES

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ●

Systematic Errors - variations of cuts to data for f_{D_c}/f_D

- Global fits all correlated with satisfying *p*-values. •
- sys error: includes chiral-CL (left), heavy mass (right), H.O. terms, $m_{\mu} \neq m_d$ and FV.

Systematic Errors - variations of cuts to data for f_{B_c}/f_B

- Global fits all correlated with satisfying *p*-values.
- sys error: includes chiral-CL (left), heavy mass (right), H.O. terms, $m_{\mu} \neq m_d$ and FV.

 $f_{B_{\epsilon}}/f_B = 1.1852(48)_{\text{stat}} \begin{pmatrix} +134\\ -145 \end{pmatrix}_{\text{sys}}$

Systematic Errors - variations of cuts to data for B_{B_s}/B_B

- Global fits all correlated with satisfying *p*-values.
- sys error: includes chiral-CL (left), heavy mass (right), H.O. terms, $m_u \neq m_d$ and FV.

Systematic Errors - variations of cuts to data for ξ

- Global fits all correlated with satisfying *p*-values.
- sys error: includes chiral-CL (left), heavy mass (right), H.O. terms, $m_u \neq m_d$ and FV.

$$\xi = 1.1853(54)_{\text{stat}} \begin{pmatrix} +110\\ -156 \end{pmatrix}_{\text{sys}}$$

Cross checks of correlator fits I

$$C_{AP}^{LS}(t) \approx A_0^L P_0^S e^{-E_0 t} + A_1^L P_1^S e^{-E_1 t}$$
$$C_{AP}^{SS}(t) \approx A_0^S P_0^S e^{-E_0 t} + A_1^S P_1^S e^{-E_1 t}$$

= 900

Construct Linear Combination

$$\begin{split} C_1^{AP}(t) &\equiv C_{AP}^{LS}(t)X^S - C_{AP}^{SS}(t)X^L \\ &\approx P_0^S \left(A_0^L X^S - A_0^S X^L\right) e^{-E_0 t} \\ &+ P_1^S \left(A_1^L X^S - A_1^S X^L\right) e^{-E_1 t} \end{split}$$

J Tobias Tsang (University of Edinburgh)

Cross checks of correlator fits I

= 200

Cross checks of correlator fits I

t/a

Identify X^S, X^L with central value of A_1^S, A_1^L from fit.

 \Rightarrow Removes (most of) excited state

 \Rightarrow Strong *a posteriori* check of fit range

Cross checks of correlator fits II

Fit to data uncorrelated excited state fit (M0 Ih_0.68)

4/6

J Tobias Tsang (University of Edinburgh)

Neutral heavy meson mixing

< 17 >

●> 《 王] 목 《 王 * 《 王

Cross checks of correlator fits II

LCs plateau in fitrange region. \Rightarrow Excited state contamination removed.

= 900

Non-Perturbative Renormalisation of mixed action

SMOM ren. conds. relates amputated vertex functions to Z factors.

$$\begin{split} 1 &= \lim_{\bar{m} \to 0} \frac{1}{12q^2} \mathrm{Tr} \left[\left(q \cdot \Lambda_A^{\mathrm{ren}} \right) \gamma_5 \not q \right] |_{\mathrm{sym}} \\ &= \frac{Z_A}{Z_q} \lim_{\bar{m} \to 0} \frac{1}{12q^2} \mathrm{Tr} \left[\left(q \cdot \Lambda_A^{\mathrm{bare}} \right) \gamma_5 \not q \right] |_{\mathrm{sym}} \\ &\equiv \frac{Z_A}{Z_q} \mathcal{P}[\Lambda_A^{\mathrm{bare}}] \end{split}$$

So for actions *i*,*j*

$$\frac{\mathcal{P}[\Lambda_A^{\text{bare}}]^{ii}\mathcal{P}[\Lambda_A^{\text{bare}}]^{jj}}{\left(\mathcal{P}[\Lambda_A^{\text{bare}}]^{ij}\right)^2} = \frac{(Z_A^{ij})^2}{Z_A^{ii}Z_A^{jj}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ ののの

But for non-mixed actions we can determine Z_A^{ii} from conserved current.

Preliminary mixed action renormalisation

First study on single configuration

 \Rightarrow mixed NPR is feasible \Rightarrow need to compute Z_A^{hh} from conserved current to obtain Z_A^{hl}