Semileptonic B decays with RHQ b quarks

Ryan Hill

RBC/UKQCD University of Southampton

 $24^{\rm th}$ September 2019

 $\underline{\mathsf{BNL} \text{ and } \mathsf{BNL}/\mathsf{RBRC}}$

Amarjit Soni

<u>UC Boulder</u> Oliver Witzel

Edinburgh University Tobias Tsang University of Southampton

Jonathan Flynn Ryan Hill Andreas Jüttner

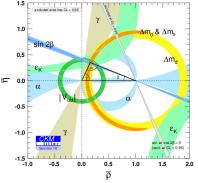
Talk Outline

- 2 Simulation Set-up
- $3 B \to \pi \text{ Analysis}$

Motivation Simulation Set-up Summarv

Motivation

- Test unitarity of CKM matrix
- $B \to \pi \ell \nu$ constrains $|V_{\mu b}|$
- $B \rightarrow D\ell\nu$ constrains $|V_{cb}|$
- 2-3 σ discrepancy between exclusive $(B \rightarrow \pi \ell \nu)$ and inclusive $(B \rightarrow X_{\mu} \ell \nu)$
- Measurements of R(D), $R(D^*), R(\pi)$



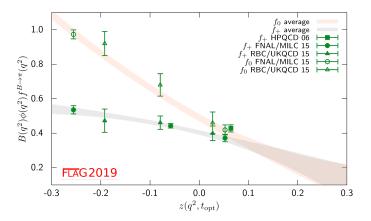
CKMfitter Group (J. Charles et al.), Eur. Phys. J. C41,

1-131 (2005) [hep-ph/0406184], updated results and

plots available at: http://ckmfitter.in2p3.fr

Motivation Simulation Set-up $B \rightarrow \pi$ Analysis $B \rightarrow D$ Analysis

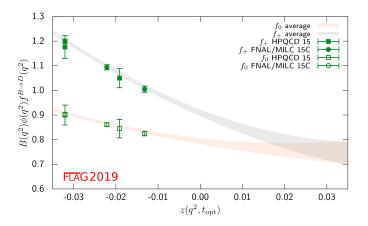
Motivation



[Flavour Lattice Averaging Group: http://flag.unibe.ch/2019/MainPage]

 $\begin{array}{c} \text{Motivation}\\ \text{Simulation Set-up}\\ B \rightarrow \pi \text{ Analysis}\\ B \rightarrow D \text{ Analysis}\\ \text{Summarv} \end{array}$

Motivation

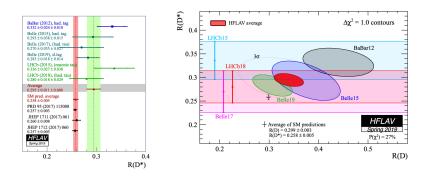


[Flavour Lattice Averaging Group: http://flag.unibe.ch/2019/MainPage]

Motivation

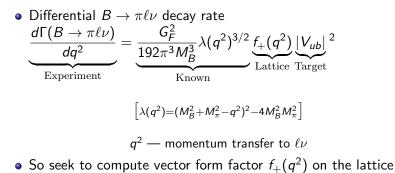
Simulation Set-up $B \rightarrow \pi$ Analysis $B \rightarrow D$ Analysis Summary

Motivation



[Heavy Flavour Averaging Group: https://hflav-eos.web.cern.ch/hflav-eos/semi/spring19/main.shtml]

Goal



- Compute the hadronic matrix element for the flavour-changing vector currents $\langle P | \mathcal{V}^{\mu} | B \rangle$
- Standard parameterisation in terms of the scalar and vector form factors *f*₀ and *f*₊:

$$\langle P | \mathcal{V}^{\mu} | B \rangle = f_{+}(q^{2}) \left(p_{B}^{\mu} + p_{P}^{\mu} - \frac{M_{B}^{2} - M_{P}^{2}}{q^{2}} q^{\mu} \right) + f_{0}(q^{2}) \left(\frac{M_{B}^{2} - M_{P}^{2}}{q^{2}} q^{\mu} \right)$$

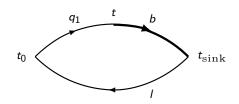
Goal

• Parallel and perpendicular form factors f_{\parallel} and f_{\perp} are easier to relate to lattice data in the rest frame of the *B*-meson:

$$\langle P|\mathcal{V}^{\mu}|B\rangle = \sqrt{2M_B} \left[v^{\mu}f_{\parallel}(E_P) + p_{\perp}^{\mu}f_{\perp}(E_P) \right]$$

with $v^{\mu} - B$ -meson 4-velocity $p_{\perp}^{\mu} - p_{P}^{\mu} - (p_{P} \cdot v)v^{\mu}$ $p_{P}^{\mu} -$ momentum of pseudoscalar particle $f_{\parallel} = \frac{\langle P | \mathcal{V}^{0} | B \rangle}{\sqrt{2M_{P}}} \qquad f_{\perp} = \frac{\langle P | \mathcal{V}^{i} | B \rangle}{\sqrt{2M_{P}}} \frac{1}{p^{i}}$

Strategy



- Insert momentum at t₀
- Quark propagator $(t_0 \stackrel{q_1}{\longrightarrow} t)$
- Sequential propagator ($t_0 \stackrel{l}{\longrightarrow} t_{\mathrm{sink}} \stackrel{b}{\longrightarrow} t$)
- Insert current at t
- q1: / or c

Light and Strange Quark Action

• RBC-UKQCD's 2+1 Domain-Wall Fermion and Iwasaki gauge action ensembles

[PRD 78 (2008) 114509] [PRD 83 (2011) 074508] [PRD 93 (2016) 074505] [JHEP 1712 (2017) 008]

- Unphysical 5th dimension with extent L_s , physical fields live on the 4-D boundary
- Preserves chiral symmetry in limit $L_s
 ightarrow \infty$
- Compute with finite L_s , gives residual mass $m_{\rm res}$ from controllable chiral symmetry breaking

Heavy Quark Action

• RHQ Action for b quarks, Columbia interpretation

[Christ et al. PRD 76 (2007) 074505] [Lin and Christ PRD 76 (2007) 074506]

- Builds on original Fermilab action [EI-Khadra et al. PRD 55 (1997) 3933]
- Related to Tsukuba interpretation [S. Aoki et al. PTP 109 (2003) 383]
- Clover action with anisotropic clover term
- Uses 3 parameters (m_0a, c_p, ζ) that can be non-pertubatively tuned to remove $\mathcal{O}((m_0a)^n)$, $\mathcal{O}(\vec{p}a)$, $\mathcal{O}((\vec{p}a)(m_0a)^n)$ errors [PRD 86 (2012) 116003]
- Use current improvement terms to get $\mathcal{O}(a)$ improved discretisation errors, in line with DWF fermions

Ensembles

	$L^3 imes T$ / a^4	$a^{-1} \ / \ { m GeV}$	m_π / MeV
C1	$24^3 imes 64$	1.78	340
C2	$24^3 imes 64$	1.78	430
M1	$32^{3} \times 64$	2.38	300
M2	$32^3 imes 64$	2.38	360
M3	$32^3 imes 64$	2.38	410
F1	$48^3 imes 96$	2.77	230

- 2+1f ensembles: Degenerate light quark
- Sea quarks: Domain-wall fermions
- Future plans to include physical pion mass ensemble C0 to the analysis.

$B \rightarrow \pi$ Analysis

Form Factors

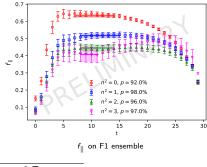
• Starting point:

$$\langle \pi | \mathcal{V}^{\mu} | B \rangle = \sqrt{2M_B} \Big[v^{\mu} f_{\parallel}(E_P) + p_{\perp}^{\mu} f_{\perp}(E_P) \Big]$$

• Calculate f_{\parallel} and f_{\perp} from lattice data

$$f_{\parallel} = \lim_{t_0 \ll t \ll t_{\mathsf{snk}}} R_0^{B \to \pi}(t, t_{\mathsf{snk}})$$

$$f_{\perp} = \lim_{t_0 \ll t \ll t_{\mathsf{snk}}} rac{1}{p^i} R^{B
ightarrow \pi}_i(t, t_{\mathsf{snk}})$$



$$R_{\mu}^{B \to \pi} = \frac{C_{3,\mu}^{B \to \pi}(t, t_{\rm snk})}{\sqrt{C_{2}^{\pi}(t)C_{2}^{B}(t - t_{\rm snk})}} \sqrt{\frac{2E_{\pi}}{e^{-E_{\pi}t}e^{-M_{B}(t - t_{\rm snk})}}}$$

 $\begin{array}{l} \text{Motivation}\\ \text{Simulation Set-up}\\ \textbf{B} \rightarrow \pi \text{ Analysis}\\ B \rightarrow D \text{ Analysis}\\ \text{Summary} \end{array}$

Form Factors

• Calculate f_{\parallel} and f_{\perp} from lattice data

$$f_{\parallel} = \lim_{t_0 \ll t \ll t_{\rm snk}} R_0^{B \to \pi}(t, t_{\rm snk})$$

$$f_{\perp} = \lim_{t_0 \ll t \ll t_{\mathrm{snk}}} rac{1}{p^i} R^{B
ightarrow \pi}_i(t, t_{\mathrm{snk}})$$

• Use this to find f_0 and f_+ :

$$f_0(q^2) = rac{\sqrt{2M_B}}{M_B^2 + E_P^2} \left[(M_B - E_P) f_{\parallel}(q^2) + (E_P^2 - M_P^2) f_{\perp}(q^2)
ight]^{f_{\perp} \ on \ G1 \ ensemble}$$

$$f_+(q^2) = rac{1}{\sqrt{2M_B}} \left[f_{\parallel}(q^2) + (M_B - E_P) f_{\perp}(q^2)
ight]$$

 $\begin{array}{l} \mbox{Motivation}\\ \mbox{Simulation Set-up}\\ \mbox{$B\to π Analysis}\\ \mbox{$B\to D Analysis}\\ \mbox{Summary} \end{array}$

Kinematic extrapolation strategy

- Separate chiral-continuum extrapolation from the q^2 extrapolation
 - Use results in the continuum
 - Use a model-independent extrapolation from this point on: z-expansions
 - Involves a change of variables $q^2
 ightarrow z$
 - By using continuum results, z-expansion coefficients are not lattice-dependent

 $\begin{array}{l} \mbox{Motivation}\\ \mbox{Simulation Set-up}\\ \mbox{$B\to π Analysis}\\ \mbox{$B\to D Analysis}\\ \mbox{Summary} \end{array}$

Kinematic extrapolation strategy

- Fit to synthetic data points in order to propagate both statistical and systematic errors to final result
 - Interpolate continuum results for the form factors to reference q^2 values equally spaced in z
 - Build up an aggregate correlation matrix of statistical and systematic errors
 - Create synthetic bootstrap samples at reference q² by taking a fake Monte-Carlo time series correlated by aggregate correlation matrix
 - Fit the *z*-expansion to synthetic data points that now combine both systematics and statistics

Chiral Continuum Fits

- Extrapolate to physical pion mass and zero lattice spacing simultaneously
- Use NLO hard-pion SU(2) HMχPT [PRD 67 (2003) 054010]

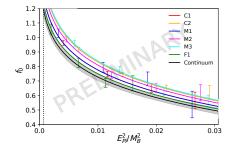
$$f(M_{\pi}, E_{\pi}, a) = \frac{c_1}{\Delta + E_{\pi}} \left(1 + \frac{\delta f}{(4\pi f_{\pi})^2} + c_2 \frac{M_{\pi}^2}{\Lambda^2} + c_3 \frac{E_{\pi}}{\Lambda} + c_4 \left(\frac{E_{\pi}}{\Lambda} \right)^2 + c_5 \left(\frac{a}{\Lambda} \right)^2 \right)$$

- $\Lambda=1~\text{GeV}$
- $\Delta_0 = 0.263 \text{ GeV}$
- $\delta f^{B o \pi} = -rac{3}{4}(3g_b^2 + 1)M_\pi^2 \log\left(rac{M_\pi^2}{\Lambda^2}
 ight)$

- $f_{\pi}=0.1304~{
 m GeV}$
- $\Delta_+ = -0.0416 \text{ GeV}$
- $g_b = 0.57$

Chiral Continuum Fits

- Three values of a
- Three/four values of E_{π} per ensemble
- Six ensembles/pion masses with three lattice spacings
- Simultaneously fit coefficients c₁₋₅ over all data
- Continuum form factor given by $f(M_{\pi}^{\text{phys}}, E_{\pi}, 0)$



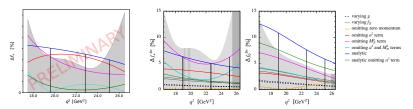
Systematic Error Analysis

- Sources of systematic error can be estimated by varying fit ansatz, parameters, propagating known uncertainties
- Estimate error due to chiral continuum fit, RHQ parameters uncertainty, quark mass uncertainty...



Systematic Error Analysis - F1 included/excluded

- Preliminary error analysis suggests a significant reduction in statistcal and systematic errors when the F1 ensemble is included (new!)
- Efforts currently ongoing



 $\begin{array}{l} \mbox{Motivation}\\ \mbox{Simulation Set-up}\\ \mbox{$B\to π Analysis}\\ \mbox{$B\to D Analysis}\\ \mbox{Summary} \end{array}$

z-expansion

• Change variables from q^2 to z with

$$egin{aligned} &z(q^2,t_0) = rac{\sqrt{1-q^2/t_+} - \sqrt{1-t_0/t_+}}{\sqrt{1-q^2/t_+} + \sqrt{1-t_0/t_+}} \ &t_+ = (M_B + M_\pi)^2 \ &t_0 = (M_B + M_\pi)(\sqrt{M_B} - \sqrt{M_\pi})^2 \end{aligned}$$

- Allows the form factors to be expanded as a power series in z
- Specifics determined by choice of form and parameters: BCL expansion used in this study [Bourrely, Caprini, Lellouch, PRD 79 (2009) 013008]

 $\begin{array}{l} \mbox{Motivation}\\ \mbox{Simulation Set-up}\\ \mbox{$B\to π Analysis}\\ \mbox{$B\to D Analysis}\\ \mbox{Summary} \end{array}$

z-expansion

• Express f_+ as convergent power series

$$f_+(q^2) = rac{1}{1-q^2/M_{B^*}^2} \sum_{k=0}^{K-1} b_+^{(k)} \left[z^k - (-1)^{k-K} rac{k}{K} z^k
ight]$$

• Express f_0 as functional form

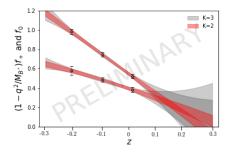
$$f_0(q^2) = \sum_{k=0}^{K-1} b_0^{(k)} z^k$$

• |z| < 1 so convergence is assured

 $\begin{array}{l} \text{Motivation}\\ \text{Simulation Set-up}\\ \textbf{B} \rightarrow \pi \text{ Analysis}\\ B \rightarrow D \text{ Analysis}\\ \text{Summary} \end{array}$

z-expansion

- Generate synthetic data points using correlation matrices given by error analysis
- Extrapolate z-expansion fits over full kinematic range
- Can constrain the fit by enforcing $f_+ = f_0$ at $q^2 = 0$
- Can combine with experimental data to determine |V_{ub}|
- Efforts ongoing



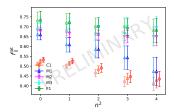
$B \rightarrow D$ Analysis

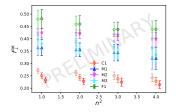
Form Factors

 Charm quarks simulated with Möbius Domain-Wall Fermions for heavy quarks

[JHEP 1604 (2016) 037] [JHEP 1712 (2017) 008]

• Simulate charm quarks at 2/3 different masses in order to inter/extrapolate to the physical value of the charm quark mass.





- Extrapolate to physical masses and continuum
- Proceed hereafter as with $B \to \pi$
- Alter fit ansatz etc. in order to estimate systematics
- Create synthetic data at reference q² values to take into account both systematics and statistics
- Perform z-expansions to obtain form factors over full kinematic range

- Analysis in early stages
- Part of the RBC/UKQCD RHQ project and will form a part of upcoming publication

- Updates to RHC/UKQCD 2015 results in the pipeline
- More precisely determined lattice spacing and inclusion of finer F1 ensemble reduces errors
- Future plans to include physical pion mass ensemble to strongly constrain chiral continuum extrapolation
- Finalising CL-extrapolation, error budget, z-fits, on $B \to \pi \ell \nu$, $B \to D \ell \nu$
- Will be comparing to other z-expansions
- $B_s \to K \ell \nu$ and $B_s \to D_s \ell \nu$: Oliver Witzel, 14:00 today