$\Delta b = 2$ mixings and ξ

Justus Tobias Tsang

P. Boyle, L. Del Debbio, N. Garron, A Jüttner, A. Soni, O. Witzel for the RBC-UKQCD Collaborations

Based on arXiv:1812.08791

Brookhaven National Lab 2019 Lattice X Intensity Frontier Workshop

24 September 2019

THE UNIVERSITY of EDINBURGH

Results for SU(3) breaking ratios (arXiv:1812.08791)

< □> < Ξ> < Ξ> < Ξ| = のへ()

Motivation for charm and bottom flavour physics

- Huge experimental efforts: LHC, Belle II, BES III, ...
- Constrain CKM unitarity by combining non-perturbative input with experimental data.
- Test CKM matrix by determining the same CKM matrix element from different processes
- Constrain BSM models
- Address lepton flavour universality (violations?)

J Tobias Tsang (University of Edinburgh) $\Delta b = 2$ mixings and ξ

Flavour Physics and CKM: leptonic decay constants

Experiment $\approx CKM \times Lattice \times (PT+kinematics)$

Leptonic decays: $\Gamma(P \to \ell \nu_{\ell}) \approx |V_{q_2q_1}|^2 \times f_P^2 \times \text{known factors}$

where
$$\mathcal{Z}_A raket{0} \overline{c} \gamma_4 \gamma_5 q \ket{D_q(0)} = f_{D_q} m_{D_q}, \qquad q=d,s$$

[HFLAV+BESIII] $f_D |V_{cd}| = (45.9 \pm 1.1) \text{ MeV}, \quad f_{D_s} |V_{cs}| = (249.1 \pm 3.2) \text{ MeV}$ Computing f_{D_s}/f_D gives access to V_{cs}/V_{cd}

▲□ ▲ □ ▲ □ ▲ □ ■ □ ● ○ ○ ○

Neutral meson mixing

Neutral mesons oscillate with their antiparticles:

 \Rightarrow Difference between mass eigenstates: Δm^{exp} measured to < 1%!

SD: Top enhanced: $m_t^2 V_{tb} V_{tl}^* \gg m_c^2 V_{cb} V_{cl}^* \gg m_u^2 V_{ub} V_{ul}^*$ LD: Only m_c, m_u in intermediate states: no top + CKM suppressed \Rightarrow Short distance dominated.

▲□ ▲ □ ▲ □ ▲ □ ■ □ ● ○ ○ ○

Operator Product Expansion

Two scale problem: $\Lambda_{\rm QCD} \sim 1 \, {\rm GeV} \ll m_{EW} \sim 100 \, {\rm GeV}$: \Rightarrow Factorise via OPE

$$\Delta m \propto \sum_{i} C_{i}(\mu) \left\langle B^{0}_{(s)} \right| \mathcal{O}_{i}^{\Delta b=2}(\mu) \left| \bar{B}^{0}_{(s)} \right\rangle$$

- Perturbative model-dependent Wilson coefficients $C_i(\mu)$
- Non-perturbative model-independent matrix elements of $\mathcal{O}_i^{\Delta b=2}(\mu)$

▲□ ▲ □ ▲ □ ▲ □ ■ □ ● ○ ○ ○

- 5 independent (parity even) operators \mathcal{O}_i .
- $\Rightarrow \text{ SM: } \mathcal{O}_1 = (\bar{b}_a \gamma_\mu (\mathbb{1} \gamma_5) q_a) (\bar{b}_b \gamma_\mu (\mathbb{1} \gamma_5) q_b) = \mathcal{O}_{VV+AA}$ $+ 4 (B) \text{SM operators: } \mathcal{O}_2 - \mathcal{O}_5$

Operator Product Expansion

Two scale problem: $\Lambda_{\rm QCD} \sim 1 \, {\rm GeV} \ll m_{EW} \sim 100 \, {\rm GeV}$: \Rightarrow Factorise via OPE

$$\Delta m \propto \sum_{i} C_{i}(\mu) \left\langle B^{0}_{(s)} \right| \mathcal{O}_{i}^{\Delta b=2}(\mu) \left| \bar{B}^{0}_{(s)} \right\rangle$$

- Perturbative model-dependent Wilson coefficients $C_i(\mu)$
- Non-perturbative model-independent matrix elements of $\mathcal{O}_i^{\Delta b=2}(\mu)$
- 5 independent (parity even) operators \mathcal{O}_i .
- $\Rightarrow \text{ SM: } \mathcal{O}_1 = (\bar{b}_a \gamma_\mu (\mathbb{1} \gamma_5) q_a) (\bar{b}_b \gamma_\mu (\mathbb{1} \gamma_5) q_b) = \mathcal{O}_{VV+AA}$ $+ 4 (B) \text{SM operators: } \mathcal{O}_2 - \mathcal{O}_5$

RBC/UKQCD's $K - \bar{K}$ BSM mixing calculation

P. Boyle, N. Garron, J. Hudspith, A. Jüttner, J. Kettle, A. Khamseh, C. Lehner, A. Soni, JTT [1812.04981 PoS Lat'18, in preparation]

Flavour Physics and CKM: neutral meson mixing

$$\Delta m_P = \left| V_{tq_2}^* V_{tq_1} \right| \times f_P^2 m_P \hat{B}_P \times \text{known factors}$$

[HFLAV]

 $\Delta m_d = 0.5064 \pm 0.0019 \,\mathrm{ps}^{-1}$ $\Delta m_s = 17.757 \pm 0.021 \,\mathrm{ps}^{-1}$

Computing ξ gives access to ratio V_{td}/V_{ts} :

$$\xi^2 \equiv \frac{f_{B_s}^2 B_{B_s}}{f_B^2 B_B} = \left| \frac{V_{td}}{V_{ts}} \right|^2 \frac{\Delta m_s}{\Delta m_d} \frac{m_B}{m_{B_s}}$$

RBC/UKQCD $N_f = 2 + 1$ ensembles

Chiral Fermions:

- $\Rightarrow O(a)$ improved
- \Rightarrow Multiplicative renormalisation

- Iwasaki gauge action
- Domain Wall Fermion action
 - \Rightarrow $N_f = 2 + 1$ flavours in the sea

 \Rightarrow $M_5 = 1.8$ for light and strange

- 2 ensembles with physical pion masses [PRD 93 (2016) 074505]
- 3 Lattice spacings [JHEP 12 (2017) 008]
- Heavier m_{π} ensembles guide small chiral extrapolation of F1

Lattice set-up

Light and strange

- Unitary light quark mass
- Physical strange quark mass
- DWF parameters same between sea and valence
- Gaussian source (sink) smearing for better overlap with ground state

Heavy (charm and beyond)

- Möbius DWF
- $M_5 = 1.0, L_s = 12$
- Stout smeared (3 hits, ho = 0.1)
- Range of quark masses from below charm to $\sim m_b/2$ on finest ensemble

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● □ ● ● ●

- \Rightarrow **All DWF** mixed action set-up
- $\Rightarrow \mathbb{Z}_2\text{-noise}$ sources (volume average) on every 2nd time slice
- \Rightarrow Increased heavy quark reach compared to [JHEP 04 (2016) 037, JHEP 12 (2017) 008]
 - ightarrow extrapolation towards b

Measurement strategy

Correlator fitting: strategy (2-point functions)

with $E_n < E_{n+1}$ and $(\psi_n)_i = \frac{\langle 0|O_i|n\rangle}{\sqrt{2E_n}}$ for $O = \bar{c}_2^L \Gamma q_1^X$ where X = S, L. Consider $\Gamma = \gamma_5$ (Pseudo scalar) and $\Gamma = \gamma_4 \gamma_5$ (Axial vector current).

ISSUE: Exponential noise growth i.e. signal-to-noise problem

 \Rightarrow Simultaneous uncorrelated excited state fits to 6 channels: $\langle AA \rangle^{SL}$, $\langle AP \rangle^{SL}$, $\langle PP \rangle^{SL}$, $\langle AA \rangle^{SS}$, $\langle AP \rangle^{SS}$ and $\langle PP \rangle^{SS}$

◆母 ▶ ▲目 ▲目 ◆日 ▲ ● ▲

Correlator fitting: fits (2-point functions)

Example fit (heavy-light meson with $am_h = 0.68$ on M0).

Example fit (heavy-strange meson with $am_h = 0.68$ on M0).

ъ

Correlator fitting: checks I

$$C_{AP}^{LS}(t) \approx A_0^L P_0^S e^{-E_0 t} + A_1^L P_1^S e^{-E_1 t}$$
$$C_{AP}^{SS}(t) \approx A_0^S P_0^S e^{-E_0 t} + A_1^S P_1^S e^{-E_1 t}$$

Construct Linear Combination

$$\begin{split} C_1^{AP}(t) &\equiv C_{AP}^{LS}(t)X^S - C_{AP}^{SS}(t)X^L \\ &\approx P_0^S \left(A_0^L X^S - A_0^S X^L\right) e^{-E_0 t} \\ &+ P_1^S \left(A_1^L X^S - A_1^S X^L\right) e^{-E_1 t} \end{split}$$

Correlator fitting: checks I

$$egin{aligned} \mathcal{C}_1^{AP}(t) &\approx \mathcal{P}_0^S \left(\mathcal{A}_0^L X^S - \mathcal{A}_0^S X^L
ight) e^{-E_0 t} \ &+ \mathcal{P}_1^S \underbrace{\left(\mathcal{A}_1^L X^S - \mathcal{A}_1^S X^L
ight)}_{\mathrm{small}} e^{-E_1 t} \end{aligned}$$

Identify X^{S}, X^{L} with **central value** of A_{1}^{S}, A_{1}^{L} from fit.

13 / 37

▲母▶ ▲臣▶ ▲臣▶ 臣|日 のへで

Correlator fitting: checks I

⇒ Removes (most of) excited state
 ⇒ Strong *a posteriori* check of fit range

Correlator fitting: checks II

▲□ ▶ ▲ □ ▶ ▲ □ ▶

三日 のへの

uncorrelated excited state fit (M0 lh_0.68)

Correlator fitting: checks II

▲ 표) ► 표) = · · · ○ < · · ·

Correlator fitting: stability (2-point functions)

Stability under variation of fit ranges

ъ

Correlator fitting of 4-quark operators: strategy

$$R(t,\Delta T) = \frac{C_3(t,\Delta T)}{8/3C_{PA}(\Delta T - t)C_{AP}(t)} \to B_P \quad \text{for} \quad t,\Delta T \gg 0$$

- Expect $R(t, \Delta T)$ to plateau for large t
- Check stability of plateaux value by varying ΔT

Correlator Fitting of 4-quark operators II

Ex: $am_h = 0.68$ on M0

J Tobias Tsang (University of Edinburgh)

 $\Delta b = 2$ mixings and ξ

Results of correlator fits

- \Rightarrow Renormalisation constants cancel
- \Rightarrow Mild linear behaviour with $1/m_H$ and a^2
- \Rightarrow Stat precision: 0.4 1.0 %

Results of correlator fits

Ratio of bag parameters

- \Rightarrow Renormalisation constants cancel
- \Rightarrow Mild linear behaviour with $1/m_H$ and a^2
- \Rightarrow Stat precision: 0.4 1.0 %

Global fit: ansatz

Base fit

 $O(a, m_\pi, m_H) = O(0, m_\pi^{\mathrm{phys}}, m_H^{\mathrm{phys}}) + C_{CL}a^2 + C_\chi \Delta m_\pi^2 + C_H \Delta m_H^{-1}$

Assess systematic errors by

- varying cuts on pion mass
- using $m_H = m_D$, m_{D_s} and m_{η_c}
- varying inclusion/exclusion of heaviest data points
- varying inclusion/exclusion of fit parameters
- including/estimating higher order terms $(a^4, (\Delta m_{\pi}^2)^2, (\Delta m_H^{-1})^2)$

▲□ ▲ □ ▲ □ ▲ □ ■ □ ● ○ ○ ○

 \Rightarrow Global fits are fully correlated.

Global fit: ratio of decay constants

Ratio of decay constants for $m_{\pi} \leq 350 \,\mathrm{MeV}$

Global fit: ratio of decay constants

$$O(a, m_{\pi}, m_H) = \frac{f_{B_s}}{f_B} + C_{CL}a^2 + C_{\chi}\Delta m_{\pi}^2 + C_H\Delta m_H^{-1}$$

Ratio of decay constants for $m_{\pi} \leq 350 \,\mathrm{MeV}$

ъ

Global fit: ratio of bag parameters

$$O(a, m_{\pi}, m_H) = \frac{B_{B_s}}{B_B} + C_{CL}a^2 + C_{\chi}\Delta m_{\pi}^2 + C_H\Delta m_H^{-1}$$

Ratio of bag parameters for $m_{\pi} \leq 350 \,\mathrm{MeV}$

Global fit: ratio of bag parameters

$$O(a, m_{\pi}, m_H) = \frac{B_{B_s}}{B_B} + C_{CL}a^2 + C_{\chi}\Delta m_{\pi}^2 + C_H\Delta m_H^{-1}$$

Ratio of bag parameters for $m_{\pi} \leq 350 \, {
m MeV}$

ъ

Global fit results - ratio of bag parameters and $\boldsymbol{\xi}$

Recall:

$$\xi \equiv f_{B_s}/f_B imes \sqrt{B_{B_s}/B_B}$$

chiral-CL of product of ratiosproduct of chiral-CL of ratios.

Global fit results - ratio of bag parameters and ξ

Recall:

$$\xi \equiv f_{B_s}/f_B imes \sqrt{B_{B_s}/B_B}$$

chiral-CL of product of ratiosproduct of chiral-CL of ratios.

$$\lim_{a \to 0; m_q \to \text{phys}} \left[f_{hs} / f_{hl} \sqrt{B_{hs} / B_{hl}} \right] (a, m_{\pi}, m_H) = 1.1851(74)_{\text{stat}}$$
$$[f_{B_s} / f_B]_{\text{phys}} \times \sqrt{[B_{B_s} / B_B]_{\text{phys}}} = 1.1853(54)_{\text{stat}}$$

chiral continuum limit of individual ratios gives better signal

Systematic Errors - variations of cuts to data for ξ

- Global fits all correlated with satisfying *p*-values.
- sys error: includes chiral-CL (left), heavy mass (right), H.O. terms, $m_u \neq m_d$ and FV.

$$\xi = 1.1853(54)_{
m stat} \left(egin{smallmatrix} +116 \ -156 \end{smallmatrix}
ight)_{
m sys}$$

Limitations and "ultimate precision"

Experimental precision on $\Delta m_s \sim 0.1\%$ and $\Delta m_d \sim 0.4\%$. Theoretical precision on $\xi \sim 1.3\%$

	f_{D_s}/f_D		f _{Bs} /f _B		ξ		B_{B_s}/B_{B_d}	
	absolute	relative	absolute	relative	absolute	relative	absolute	relative
central	1.1652		1.1852		1.1853		1.0002	
stat	0.0035	0.30%	0.0048	0.40%	0.0054	0.46%	0.0043	0.43%
fit chiral-CL	+0.0112 -0.0031	$^{+0.96}_{-0.26}$ %	$^{+0.0110}_{-0.0045}$	$^{+0.93}_{-0.38}\%$	+0.0084 -0.0038	$^{+0.71}_{-0.32}$ %	+0.0020 -0.0044	$^{+0.20}_{-0.44}\%$
fit heavy mass	$^{+0.0003}_{-0.0000}$	$^{+0.02}_{-0.00}\%$	$^{+0.0000}_{-0.0081}$	$^{+0.00}_{-0.69}\%$	$^{+0.0000}_{-0.0091}$	$^{+0.00}_{-0.77}\%$	$^{+0.0012}_{-0.0031}$	$^{+0.12}_{-0.31}\%$
H.O. heavy	0.0000	0.00%	0.0054	0.45%	0.0049	0.41%	0.0021	0.21%
H.O. disc.	0.0009	0.07%	0.0009	0.07%	0.0021	0.18%	0.0016	0.16%
$m_u \neq m_d$	0.0009	0.08%	0.0009	0.07%	0.0010	0.08%	0.0001	0.01%
finite size	0.0021	0.18%	0.0021	0.18%	0.0021	0.18%	0.0018	0.18%
total systematic	$^{+0.0114}_{-0.0039}$	+0.98 % -0.34 %	+0.0125 -0.0137	$^{+1.06}_{-1.16}\%$	+0.0102 -0.0146	+0.86 % -1.24	+0.0041 -0.0070	$^{+0.41}_{-0.70}\%$
total sys+stat	$^{+0.0120}_{-0.0052}$	$^{+1.03}_{-0.45}\%$	$^{+0.0134}_{-0.0145}$	$^{+1.13}_{-1.22}\%$	$^{+0.0116}_{-0.0156}$	$^{+0.97}_{-1.32}\%$	$^{+0.0060}_{-0.0082}$	$^{+0.60}_{-0.82}\%$

\Rightarrow Systematically Improvable with finer lattices at (near) physical m_{π} .

▲冊▶ ▲■▶ ▲■▶ ■目 のQ@

Comparison to literature - ratio of decay constants

- Self consistent with RBC/UKQCD17: JHEP 12 (2017) 008
- Complimentary to (most) literature no effective action for b.
- One of few results with physical pion masses.

$$|V_{cd}/V_{cs}| = 0.2148(56)_{
m exp} \left({}^{+22}_{-10}
ight)_{
m lat}$$

Comparison to literature - ratio of mixing parameters

- Complimentary no effective action needed for b
- Complimentary no operator mixing!
- First time with physical pion masses
- New results: HPQCD'19, King et al. '19

Comparison to literature - V_{td}/V_{ts}

Plot taken from HPQCD'19

 $|V_{td}/V_{ts}| = 0.2018(4)_{\rm e} \begin{pmatrix} +20\\ -27 \end{pmatrix}_{\rm t}$

- Slight "discrepancy" between tree-only and loop determinations
- Error still dominated by theory
- Requires more work, but groups are active
- Our next target: V_{td} and V_{ts}

Next steps: Decay constants and bag parameters

 Different choice of (domain wall) action between light/strange and heavy quarks leads to a mixed action
 Mixed action renormalisation constants cancel for appropriate ratios (f_{Bs}/f_B, B_{Bs}/B_B), but are needed for individual decay constants and bag parameters

 \Rightarrow Need to carry out the fully non-perturbative mixed action renormalisation as outlined in JHEP **12** (2017) 008.

Next steps: Decay constants and bag parameters

- Different choice of (domain wall) action between light/strange and heavy quarks leads to a mixed action
 Mixed action renormalisation constants cancel for appropriate ratios (f_{Bs}/f_B, B_{Bs}/B_B), but are needed for individual decay constants and bag parameters
- \Rightarrow Need to carry out the fully non-perturbative mixed action renormalisation as outlined in JHEP **12** (2017) 008.
- Extend the study to the full operator basis
- ⇒ analogous to RBC/UKQCD's $K \bar{K}$ study (1812.04981, in preparation)

(日本)

Next steps: Decay constants and bag parameters

- Different choice of (domain wall) action between light/strange and heavy quarks leads to a mixed action
 Mixed action renormalisation constants cancel for appropriate ratios (f_{Bs}/f_B, B_{Bs}/B_B), but are needed for individual decay constants and bag parameters
- \Rightarrow Need to carry out the fully non-perturbative mixed action renormalisation as outlined in JHEP **12** (2017) 008.
- 2 Extend the study to the full operator basis
- ⇒ analogous to RBC/UKQCD's $K \bar{K}$ study (1812.04981, in preparation)
- Supplement data set with JLQCD ensemble (in collaboration with S. Hashimoto and T. Kaneko)
- \Rightarrow further reach in m_H due to finer lattice spacing

▲冊▶ ▲■▶ ▲■▶ ■目 のQ@

preliminary $K^0 - \bar{K}^0$ results [1812.04981,in preparation]

$$R_{i} \equiv \left\langle \bar{P}^{0} \right| \mathcal{O}_{i} \left| P^{0} \right\rangle / \left\langle \bar{P}^{0} \right| \mathcal{O}_{1} \left| P^{0} \right\rangle$$

PRELIMINARY RESULTS in \overline{MS} at $3 \,\mathrm{GeV}$

 $\Delta b = 2$ mixings and ξ

ъ

$B^0_{(s)} - ar{B}^0_{(s)}$ (and $D^0 - ar{D}^0$) **PRELIMINARY** and **BARE**

- "quite linear" in m_H^{-1}
- similar slopes for h-l and h-s \Rightarrow SU(3) breaking rat's?

- renormalisation to be done (mixed action + op mixing)
- analogous analysis to $K \bar{K}$ paper + m_H dependence

Increased set of ensembles

 \Rightarrow Fine lattices: Further heavy quark reach on JLQCD ensembles \Rightarrow Chiral extrapolation stabilised by m_{π}^{phys} ensembles

 \Rightarrow Combined physics analysis with S. Hashimoto and T. Kaneko

JLQCD + RBC/UKQCD data: ratio of decay constants I

RBC-UKQCD data set from arXiv:1812.08791

JLQCD + RBC/UKQCD data: ratio of decay constants I

Increased reach in the heavy-mass. The fine KEK ensemble is yet to come!

JLQCD + RBC/UKQCD data: ratio of decay constants II

ъ

J Tobias Tsang (University of Edinburgh) $\Delta b = 2$ mixings and ξ

JLQCD + RBC/UKQCD data: ratio of decay constants II

33 / 37

Write out the excited state contribution to the three point functions

$$\begin{split} C_{3}^{\mathcal{O}}(t;\Delta T) &\approx + \frac{M_{\mathrm{snk}}^{0} M_{\mathrm{src}}^{0}}{4E_{0}E_{0}} \left\langle gr \right| \mathcal{O} \left| gr \right\rangle e^{-E_{0}\Delta T} \\ &+ \frac{M_{\mathrm{snk}}^{0} M_{\mathrm{src}}^{1}}{4E_{0}E_{1}} \left\langle gr \right| \mathcal{O} \left| ex \right\rangle e^{-(E_{0}+E_{1})\Delta T/2} e^{-(E_{1}-E_{0})(t-\Delta T/2)} \\ &+ \frac{M_{\mathrm{snk}}^{1} M_{\mathrm{src}}^{0}}{4E_{0}E_{1}} \left\langle ex \right| \mathcal{O} \left| gr \right\rangle e^{-(E_{0}+E_{1})\Delta T/2} e^{-(E_{0}-E_{1})(t-\Delta T/2)} \end{split}$$

- Use the excited state information from the two-point fits.
- Compare ground state only vs. ground + excited as a function of ΔT

◆母 ▶ ◆ ■ ▶ ◆ ■ ▶ ● ● ● ● ● ●

JLQCD + RBC/UKQCD data: bag parameter fitting

• Ground state fit: to a constant (range indicated in plot)

• Excited state fit: to functional form above for all data points shown.

JLQCD + RBC/UKQCD data: bag parameter fitting

- Combined fit to 2-point and 3-point functions possible
- Small symbols: ground state only
- Large symbols: excited state fit
- Each data point is a separate fit

• Stable for
$$\Delta T/a\gtrsim 20$$

• Stable for different channels

Conclusions and Outlook

SU(3) breaking ratios

- arXiv:1812.08791
- f_{D_s}/f_D , f_{B_s}/f_B , B_{B_s}/B_B and ξ
- $|V_{cd}/V_{cs}|$, $|V_{td}/V_{ts}|$
- 3 lattice spacings, 2 $m_{\pi}^{\rm phys}$
- First result for ξ and B_{B_s}/B_B with $m_\pi^{\rm phys}$
- m_h from below m_c to $\sim m_b/2$ \Rightarrow extrapolation to *b* for ratios \Rightarrow fully relativistic
- Good continuum scaling and self-consistent
- Competitive precision

Ongoing

- Supplementing dataset with very fine JLQCD ensembles
- Combined fit with universality constraint
- Mixed action renormalisation underway
- First results look promising
- \Rightarrow Determine $f_{B_{(s)}}$, $f_{D_{(s)}}$
- $\Rightarrow \text{ Full mixing operator basis for } B_{(s)} \text{ and } D \text{ (short distance).}$

Outlook

•
$$a^{-1} = 2.8 \, {
m GeV}$$
, $m_{\pi} = m_{\pi}^{\rm phys}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

ADDITIONAL SLIDES

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 三 臣 ■ り へ ()

Global fit results for ξ

$$O(a, m_\pi, m_H) = O(0, m_\pi^{\mathrm{phys}}, m_H^{\mathrm{phys}}) + C_{CL}a^2 + C_\chi \Delta m_\pi^2 + C_H \Delta m_H^{-1}$$

Ratio of decay constants for $m_\pi \leq 350 \, {
m MeV}$

ъ

Global fit results for ξ

$$O(a, m_\pi, m_H) = O(0, m_\pi^{\mathrm{phys}}, m_H^{\mathrm{phys}}) + C_{CL}a^2 + C_\chi \Delta m_\pi^2 + C_H \Delta m_H^{-1}$$

Systematic Errors - variations of cuts to data for f_{D_s}/f_D

- Global fits all correlated with satisfying *p*-values.
- sys error: includes chiral-CL (left), heavy mass (right), H.O. terms, $m_u \neq m_d$ and FV.

J Tobias Tsang (University of Edinburgh)

 $\Delta b = 2$ mixings and ξ

Systematic Errors - variations of cuts to data for f_{B_c}/f_B

- Global fits all correlated with satisfying *p*-values.
- sys error: includes chiral-CL (left), heavy mass (right), H.O. terms, $m_{\mu} \neq m_d$ and FV.

Systematic Errors - variations of cuts to data for B_{B_s}/B_B

- Global fits all correlated with satisfying *p*-values.
- sys error: includes chiral-CL (left), heavy mass (right), H.O. terms, $m_u \neq m_d$ and FV.

Systematic Errors - variations of cuts to data for ξ

- Global fits all correlated with satisfying *p*-values.
- sys error: includes chiral-CL (left), heavy mass (right), H.O. terms, $m_u \neq m_d$ and FV.

$$\xi = 1.1853(54)_{
m stat} \left(egin{smallmatrix} +110 \ -156 \end{smallmatrix}
ight)_{
m sys}$$

Non-Perturbative Renormalisation of mixed action

SMOM ren. conds. relates amputated vertex functions to Z factors.

$$\begin{split} 1 &= \lim_{\bar{m} \to 0} \frac{1}{12q^2} \mathrm{Tr} \left[\left(q \cdot \Lambda_A^{\mathrm{ren}} \right) \gamma_5 \not q \right] |_{\mathrm{sym}} \\ &= \frac{Z_A}{Z_q} \lim_{\bar{m} \to 0} \frac{1}{12q^2} \mathrm{Tr} \left[\left(q \cdot \Lambda_A^{\mathrm{bare}} \right) \gamma_5 \not q \right] |_{\mathrm{sym}} \\ &\equiv \frac{Z_A}{Z_q} \mathcal{P}[\Lambda_A^{\mathrm{bare}}] \end{split}$$

So for actions *i*,*j*

$$\frac{\mathcal{P}[\Lambda_A^{\mathrm{bare}}]^{ii}\mathcal{P}[\Lambda_A^{\mathrm{bare}}]^{jj}}{\left(\mathcal{P}[\Lambda_A^{\mathrm{bare}}]^{ij}\right)^2} = \frac{(Z_A^{ij})^2}{Z_A^{ii}Z_A^{jj}}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

But for non-mixed actions we can determine Z_A^{ii} from conserved current.

Preliminary mixed action renormalisation

First study on single configuration

 \Rightarrow mixed NPR is feasible \Rightarrow need to compute Z_A^{hh} from conserved current to obtain Z_A^{hl}

JLQCD + RBC/UKQCD data: additional operators

< 분▶ < 분▶ · 분|레 · 이오야 ·

JLQCD + RBC/UKQCD data: additional operators

J Tobias Tsang (University of Edinburgh)

 $\Delta b = 2$ mixings and ξ

ъ