Semi-leptonic B_s decays

Oliver Witzel (RBC-UKQCD collaborations)

Lattice X IF BNL, Upton, NY, USA September 24, 2019

Semi-leptonic B_s decays

Oliver Witzel (RBC-UKQCD collaborations)

Jonathan M. Flynn, Ryan C. Hill, Andreas Jüttner, J. Tobias Tsang, Amarjit Soni

introduction

introduction	$B_s \to K \ell \nu$	$B_s \rightarrow D_s \ell \nu$	FLAG	outlook
00000	0000000	000000	000	000

Motivation

- ▶ Determine CKM matrix elements, fundamental parameters of the Standard Model
- ▶ Predict processes to test Standard Model or discover new physics

[http://ckmfitter.in2p3.fr]

- $\blacktriangleright B \to \pi \ell \nu$ and $B \to D \ell \nu$ presented by Ryan C. Hill
- Only spectator quark differs
- \blacktriangleright Lattice QCD prefers s quark over u quark: statistically more precise, computationally cheaper
- ▶ B factories run at $\Upsilon(4s)$ threshold \Rightarrow B mesons
- ▶ LHC collisions create many B and B_s mesons which decay ⇒ LHCb
 - \rightarrow LHCb prefers the ratio $(B_s \rightarrow D_s \ell \nu)/(B_s \rightarrow K \ell \nu) \Rightarrow |V_{cb}/V_{ub}|$

introduction	$B_S \rightarrow K \ell \nu$	$B_s \rightarrow D_s \ell \nu$	FLAG	outlook
00000	0000000	000000	000	000

 $|V_{ub}|$ from exclusive

 $|V_{cb}|$ from exclusive

introduction	$B_s \rightarrow K \ell \nu$	$B_s \rightarrow D_s \ell \nu$	FLAG	outlook
000000	0000000	000000	000	000

 $|V_{ub}|$ from exclusive semi-leptonic $B_s \rightarrow K \ell \nu$ decay

• Conventionally parametrized by $(B_s \text{ meson at rest})$

$$\begin{aligned} \frac{d\Gamma(B_s \to K\ell\nu)}{dq^2} &= \frac{G_F^2 |V_{ub}|^2}{24\pi^3} \frac{(q^2 - m_\ell^2)^2 \sqrt{E_K^2 - M_K^2}}{q^4 M_{B_s}^2} \\ \text{experiment} & \begin{array}{c} \mathsf{CKM} & \mathsf{known} \\ &\times \left[\left(1 + \frac{m_\ell^2}{2q^2} \right) M_{B_s}^2 (E_K^2 - M_K^2) |f_+(q^2)|^2 + \frac{3m_\ell^2}{8q^2} (M_{B_s}^2 - M_K^2)^2 |f_0(q^2)|^2 \right] \\ & \begin{array}{c} \mathsf{nonperturbative input} \end{aligned}$$

introduction	$B_S \rightarrow K \ell \nu$	$B_s \rightarrow D_s \ell \nu$	FLAG	outlook
000000	0000000	000000	000	000

Nonperturbative input

▶ Parametrizes interactions due to the (nonperturbative) strong force

▶ Use operator product expansion (OPE) to identify short distance contributions

▶ Calculate the flavor changing currents as point-like operators using lattice QCD

introduction	$B_s \rightarrow K \ell \nu$	$B_S \rightarrow D_S \ell \nu$	FLAG	outlook
00000	0000000	000000	000	000

- ▶ RBC-UKQCD's 2+1 flavor domain-wall fermion and Iwasaki gauge action ensembles
 - → Three lattice spacings *a* ~ 0.11 fm, 0.08 fm, 0.07 fm; one ensemble with physical pions [PRD 78 (2008) 114509][PRD 83 (2011) 074508][PRD 93 (2016) 074505][JHEP 1712 (2017) 008]

introduction	$B_s \rightarrow K \ell \nu$	$B_s \rightarrow D_s \ell \nu$	FLAG	outlook
00000	0000000	000000	000	000

	L	$a^{-1}({\sf GeV})$) am _l	am _s	$M_{\pi}({ m MeV})$	# configs.	#source	S
C1	24	1.784	0.005	0.040	338	1636	1	[PRD 78 (2008) 114509]
C2	24	1.784	0.010	0.040	434	1419	1	[PRD 78 (2008) 114509]
M1	32	2.383	0.004	0.030	301	628	2	[PRD 83 (2011) 074508]
M2	32	2.383	0.006	0.030	362	889	2	[PRD 83 (2011) 074508]
М3	32	2.383	0.008	0.030	411	544	2	[PRD 83 (2011) 074508]
C0	48	1.730	0.00078	0.0362	139	40	81/1*	[PRD 93 (2016) 074505]
M0	64	2.359	0.000678	0.02661	139			[PRD 93 (2016) 074505]
F1	48	2.774	0.002144	0.02144	234	98	24	[JHEP 1712 (2017) 008]

* All mode averaging: 81 "sloppy" and 1 "exact" solve [Blum et al. PRD 88 (2012) 094503]

▶ Lattice spacing determined from combined analysis [Blum et al. PRD 93 (2016) 074505]

> a: \sim 0.11 fm, \sim 0.08 fm, \sim 0.07 fm

introduction	$B_s \rightarrow K \ell \nu$	$B_s \rightarrow D_s \ell \nu$	FLAG	outlook
00000	0000000	000000	000	000

- ▶ RBC-UKQCD's 2+1 flavor domain-wall fermion and Iwasaki gauge action ensembles
 - → Three lattice spacings *a* ~ 0.11 fm, 0.08 fm, 0.07 fm; one ensemble with physical pions [PRD 78 (2008) 114509][PRD 83 (2011) 074508][PRD 93 (2016) 074505][JHEP 1712 (2017) 008]
- ► Unitary and partially quenched domain-wall up/down quarks [Kaplan PLB 288 (1992) 342], [Shamir NPB 406 (1993) 90]
- Domain-wall strange quarks at/near the physical value
- ightarrow Additional challenge $m_c = 1.28 {
 m GeV} \sim ~~270 imes m_d$

 $m_b = 4.18 {
m GeV} \sim 1000 imes m_d$

introduction	$B_s \to K \ell \nu$	$B_S \rightarrow D_S \ell \nu$	FLAG	outlook
00000	0000000	000000	000	000

► Charm: Möbius domain-wall fermions optimized for heavy quarks [Boyle et al. JHEP 1604 (2016) 037] → Simulate 3 or 2 charm-like masses then extrapolate/interpolate

introduction	$B_s \rightarrow K \ell \nu$	$B_S \rightarrow D_S \ell \nu$	FLAG	outlook
00000	0000000	000000	000	000

► Charm: Möbius domain-wall fermions optimized for heavy quarks [Boyle et al. JHEP 1604 (2016) 037] → Simulate 3 or 2 charm-like masses then extrapolate/interpolate

▶ Effective relativistic heavy quark (RHQ) action for bottom quarks

[Christ et al. PRD 76 (2007) 074505], [Lin and Christ PRD 76 (2007) 074506]

- \rightarrow Builds upon Fermilab approach [EI-Khadra et al. PRD 55 (1997) 3933]
- \rightarrow Allows to tune the three parameters (m_0a , c_P , ζ) nonperturbatively [PRD 86 (2012) 116003]
- \rightarrow Smooth continuum limit; heavy quark treated to all orders in $(m_b a)^n$
- → Mostly nonperturbative renormalization [Hashimoto et al. PRD61 (1999) 014502] [EI-Khadra et al. PRD64 (2001) 014502]

$$Z_V^{bl} = \varrho \sqrt{Z_V^{ll} Z_V^{bb}}$$

introduction	$B_S \rightarrow K \ell \nu$	$B_s \rightarrow D_s \ell \nu$	FLAG	outlook
000000	0000000	000000	000	000

$B_s \rightarrow K \ell \nu$ form factors

▶ Parametrize the hadronic matrix element for the flavor changing vector current V^{μ} in terms of the form factors $f_+(q^2)$ and $f_0(q^2)$

▶ Calculate 3-point function by

- \rightarrow Inserting a quark source for a strange quark propagator at t_0
- \rightarrow Allow it to propagate to t_{sink} , turn it into a sequential source for a b quark
- \rightarrow Use a light quark propagating from t_0 and contract both at t with $t_0 \leq t \leq t_{sink}$

introduction	$B_S \rightarrow K \ell \nu$	$B_S \rightarrow D_S \ell \nu$	FLAG	outlook
000000	0000000	000000	000	000

$B_s \rightarrow K \ell \nu$ form factors: F1 ensemble

 \blacktriangleright Comparison of fit to the ground state only with fit including one excited state term for K and B_s

introduction	$B_s \rightarrow K \ell \nu$	$B_s \rightarrow D_s \ell \nu$	FLAG	outlook
000000	0000000	000000	000	000

Chiral-continuum extrapolation using SU(2) hard-kaon χ PT

▶ Updating calculation [PRD 91 (2015) 074510] with improved values for a^{-1} and RHQ parameters

•
$$f_{pole}(M_K, E_K, a^2) = \frac{1}{E_K + \Delta} c^{(1)} \times \left[1 + \frac{\delta f}{(4\pi f)^2} + c^{(2)} \frac{M_{\pi}^2}{\Lambda^2} + c^{(3)} \frac{E_K}{\Lambda} + c^{(4)} \frac{E_K^2}{\Lambda^2} + c^{(5)} \frac{a^2}{\Lambda^2 a_{32}^4} \right]$$

▶ δf non-analytic logs of the kaon mass and hard-kaon limit is taken by $M_K/E_K \rightarrow 0$

introduction	$B_s \rightarrow K \ell \nu$	$B_s \rightarrow D_s \ell \nu$	FLAG	outlook
000000	0000000	000000	000	000

Estimate systematic errors due to

- Chiral-continuum extrapolation
 - \rightarrow Use alternative fit functions, vary pole mass, etc.
 - \rightarrow Impose different cuts on the data
- Discretization errors of light and heavy quarks
 - \rightarrow Estimate via power-counting
- Uncertainty of the renormalization factors
 - \rightarrow Estimate effect of higher loop corrections
- Finite volume, iso-spin breaking, ...
- Uncertainty due to RHQ parameters and lattice spacing (a^{-1})
 - \rightarrow Carry out additional simulations to test effects on form factors
- Uncertainty of strange quark mass
 - \rightarrow Repeat simulation with different valence quark mass

\Rightarrow full error budget

introduction	$B_S \rightarrow K \ell \nu$	$B_s \rightarrow D_s \ell \nu$	FLAG	outlook
000000	00000000	000000	000	000

PRELIMINARY error budget $B_s \rightarrow K \ell \nu$

$$\bullet \, \delta f = \left| f^{\text{variation}} - f^{\text{central}} \right| / f^{\text{central}}$$

introduction	$B_s \rightarrow K \ell \nu$	$B_s \rightarrow D_s \ell \nu$	FLAG	outlook
000000	00000000	000000	000	000

PRELIMINARY error budget $B_s \rightarrow K \ell \nu$

▶ "Other": 3% placeholder to cover higher order corrections, lattice spacing, finite volume, ...

 $\begin{array}{ccc} \text{introduction} & B_{\text{S}} \rightarrow K \ell \nu & B_{\text{S}} \rightarrow D_{\text{S}} \ell \nu & \text{FLAG} \\ 000000 & 0000000 & 000000 & 000 \end{array}$

Kinematical extrapolation (*z*-expansion)

 \blacktriangleright Map q^2 to z with minimized magnitude in the semi-leptonic region: $|z| \leq 0.146$

$$z(q^2,t_0)=rac{\sqrt{1-q^2/t_+}-\sqrt{1-t_0/t_+}}{\sqrt{1-q^2/t_+}+\sqrt{1-t_0/t_+}}$$
 with

$$t_{\pm} = (M_B \pm M_{\pi})^2 \ t_0 \equiv t_{
m opt} = (M_B + M_{\pi})(\sqrt{M_B} - \sqrt{M_{\pi}})^2$$

[Boyd, Grinstein, Lebed, PRL 74 (1995) 4603] [Bourrely, Caprini, Lellouch, PRD 79 (2009) 013008]

- **•** Express f_+ as convergent power series
- f_0 is analytic, except for B^* pole
- ▶ BCL with poles $M_+ = B^* = 5.33$ GeV and $M_0 = 5.63$ GeV
- Exploit kinematic constraint $f_+ = f_0 \Big|_{a^2=0}$
- \rightarrow Include HQ power counting to constrain size of f_+ coefficients
- ▶ Systematic errors subject to changes!

outlook

 $\begin{array}{ccc} \text{introduction} & B_{\text{S}} \rightarrow K\ell\nu & B_{\text{S}} \rightarrow D_{\text{S}}\ell\nu & \text{FLAG} & \text{outlook} \\ 000000 & 0000000 & 000000 & 0000 & 0000 \\ \end{array}$

Kinematical extrapolation (*z*-expansion)

 \blacktriangleright Map q^2 to z with minimized magnitude in the semi-leptonic region: $|z| \leq 0.146$

$$z(q^2,t_0)=rac{\sqrt{1-q^2/t_+}-\sqrt{1-t_0/t_+}}{\sqrt{1-q^2/t_+}+\sqrt{1-t_0/t_+}}$$
 with

$$t_{\pm} = (M_B \pm M_{\pi})^2 \ t_0 \equiv t_{
m opt} = (M_B + M_{\pi})(\sqrt{M_B} - \sqrt{M_{\pi}})^2$$

[Boyd, Grinstein, Lebed, PRL 74 (1995) 4603] [Bourrely, Caprini, Lellouch, PRD 79 (2009) 013008]

- Allows to compare shape of form factors
 - → Obtained by other lattice calculations [Bouchard et al. PRD 90 (2014) 054506] [Bazavov et al. arXiv:1901.02561]
 - \rightarrow Predicted by QCD sum rules and alike
- ► Combination with experiment leads to the overall normalization: |V_{ub}|
- ► Systematic errors subject to changes!

introduction	$B_s \rightarrow K \ell \nu$	$B_s \rightarrow D_s \ell \nu$	FLAG	outlook
000000	0000000	000000	000	000

Phenomenological interpretation (2015) [PRD 91 (2015) 074510]

 \blacktriangleright Predict SM differential branching fractions using $|V_{ub}|$ as input for lepton = μ or au

introduction	$B_s \rightarrow K \ell \nu$	$B_S \rightarrow D_S \ell \nu$	FLAG	outlook
000000	0000000	000000	000	000

Phenomenological interpretation (2015) [PRD 91 (2015) 074510]

- \blacktriangleright Predict SM differential branching fractions using $|V_{ub}|$ as input for lepton = μ or au
- ▶ Predict ratio of branching fractions → LFUV

$$R_{\pi}^{ au/\mu}=0.69(19)$$

$$R_K^{ au/\mu} = 0.77(12)$$

introduction	$B_s \rightarrow K \ell \nu$	$B_s \rightarrow D_s \ell \nu$	FLAG	outlook
000000	0000000	000000	000	000

Phenomenological interpretation (2015) [PRD 91 (2015) 074510]

- \blacktriangleright Predict SM differential branching fractions using $|V_{ub}|$ as input for lepton = μ or au
- ▶ Predict ratio of branching fractions → LFUV

ntroduction	$B_S \rightarrow K \ell \nu$	$B_s \rightarrow D_s \ell \nu$	FLAG	outlook
00000	0000000	00000	000	000

 $|V_{cb}|$ from exclusive semi-leptonic $B_s \rightarrow D_s \ell \nu$ decay

• Conventionally parametrized by $(B_s \text{ meson at rest})$

$$\begin{split} \frac{d\Gamma(B_s \to D_s \ell \nu)}{dq^2} = & \frac{G_F^2 |V_{cb}|^2}{24\pi^3} \frac{(q^2 - m_\ell^2)^2 \sqrt{E_{D_s}^2 - M_{D_s}^2}}{q^4 M_{B_s}^2} \\ \text{experiment} & \text{CKM} \\ & \times \left[\left(1 + \frac{m_\ell^2}{2q^2} \right) M_{B_s}^2 (E_{D_s}^2 - M_{D_s}^2) |f_+(q^2)|^2 + \frac{3m_\ell^2}{8q^2} (M_{B_s}^2 - M_{D_s}^2)^2 |f_0(q^2)|^2 \right] \\ & \text{nonperturbative input} \end{split}$$

introduction	$B_S \rightarrow K \ell \nu$	$B_s \rightarrow D_s \ell \nu$	FLAG	outlook
000000	0000000	00000	000	000

Global fit $B_s \to D_s \ell \nu$

•
$$f(q^2, a, M_{\pi}, M_{D_s}) = \left[\alpha_1 + \alpha_2 M_{\pi}^2 + \sum_{j=1}^{n_{D_s}} \alpha_{3,j} \left[\Delta M_{D_s}^{-1} \right]^j + \alpha_4 a^2 \right] P_{a,b} \left(\frac{q^2}{M_{B_s}^2} \right)$$

with $\Delta M_{D_s}^{-1} \equiv \left(\frac{1}{M_{D_s}} - \frac{1}{M_{D_s}^{\text{phys}}} \right), \quad P_{a,b}(x) = \frac{1 + \sum_{i=1}^{N_s} a_i x^i}{1 + \sum_{i=1}^{N_b} b_i x^i}$

introduction 000000	$B_S \to K \ell \nu$	$B_{\rm S} \rightarrow D_{\rm S} \ell \nu$	FLAG 000	outlook 000

Global fit
$$B_s \to D_s \ell \nu$$

$$\mathbf{F}(q^2, \mathbf{a}, M_{\pi}, M_{D_s}) = \left[\alpha_1 + \alpha_2 M_{\pi}^2 + \sum_{j=1}^{n_{D_s}} \alpha_{3,j} \left[\Delta M_{D_s}^{-1} \right]^j + \alpha_4 a^2 \right] P_{a,b} \left(\frac{q^2}{M_{B_s}^2} \right)$$

> Extrapolation to the continuum limit with physical quark masses

introduction	$B_S \rightarrow K \ell \nu$	$B_s \rightarrow D_s \ell \nu$	FLAG	outlook
000000	0000000	000000	000	000

PRELIMINARY error budget $B_s \rightarrow D_s \ell \nu$

$$\bullet \, \delta f = \left| f^{\text{variation}} - f^{\text{central}} \right| / f^{\text{central}}$$

introduction	$B_S \rightarrow K \ell \nu$	$B_s \rightarrow D_s \ell \nu$	FLAG	outlook
000000	0000000	000000	000	000

PRELIMINARY error budget $B_s \rightarrow D_s \ell \nu$

▶ "Other": 3% placeholder to cover higher order corrections, lattice spacing, finite volume, ...

introduction	$B_s \rightarrow K \ell \nu$	$B_s \rightarrow D_s \ell \nu$	FLAG	outlook
000000	0000000	000000	000	000

z-expansion

▶ BCL with poles $M_+ = B_c^* = 6.33$ GeV and $M_0 = 6.42$ GeV kinematical constraint $f_0^{B_s \to D_s}(0) = f_+^{B_s \to D_s}(0)$

introduction	$B_S \rightarrow K \ell \nu$	$B_s \rightarrow D_s \ell \nu$	FLAG	outlook
000000	0000000	00000	000	000

Status $B_s \to K \ell \nu$ and $B_s \to D_s \ell \nu$

- $B_s \rightarrow K \ell \nu$ chiral-continuum extrapolation
- $B_s
 ightarrow D_s \ell
 u$ global fit $(M_\pi, M_{D_s}, a^2, q^2)$
- Extract synthetic data points
- Full systematic error budget
 - \rightarrow RHQ parameter tuning
 - \rightarrow Continuum extrapolation:
 - cut to data set, different fit functions, ...
 - \rightarrow Charm extrapolation
 - \rightarrow FV, higher order disc. effects, isospin,
 - s-quark mass tuning, . . .

- > z-expansion over full q^2 range
 - \rightarrow BGL vs. BCL
 - ightarrow Test CLN for $B_s
 ightarrow D_s \ell
 u$
 - \rightarrow Number of synthetic data points
 - \rightarrow Different truncations
 - \rightarrow Incl. vs. excluding $f_+ = f_0 \Big|_{q^2 = 0}$
- Phenomenology: $R(K), R(D_s), \ldots$

Flavor Lattice Averaging Group

▶ Please do cite calculations feeding into FLAG averages

[FLAG 2019]

introduction 000000			B _s	; → 000	<i>Кℓ</i> ν 000	0				$B_S \rightarrow D_S$	lν	FLAG OOO	outlook 000
$B ightarrow D_{(s)}^{(*)}\ell s$	ν												
Collaboration	Ref.	N_f	Dub _{li}	Contin Star	difian extra	finite strapolation	renor day	heath, maliantion	w = 1 for	orm factor / ratio	► New HPQ	CD $B_s ightarrow D_s \ell u$ [arXiv:1 CD $B_s ightarrow D^* \ell u$ [arXiv:1	.906.00701]
HPQCD 15, HPQCD 17 [614 FNAL/MILC 15C Atoui 13	I, 616] [613] [610]	2+1 2+1 2	A A A	∘ ★ ★	0 0 0	∘ ★ ★	0	√ √ √	$\mathcal{G}^{B \to D}(1)$ $\mathcal{G}^{B \to D}(1)$ $\mathcal{G}^{B \to D}(1)$	$1.035(40) \\ 1.054(4)(8) \\ 1.033(95)$	$h_{A_1}^s(1)$ (HISQ.	HPQCD)	1904.02040]
HPQCD 15, HPQCD 17 [614 Atoui 13	1, 616] [610]	$^{2+1}_{2}$	A A	∘ ★	0 0	∘ ★	0	✓✓	$\mathcal{G}^{B_s \to D_s}(1) \\ \mathcal{G}^{B_s \to D_s}(1)$	1.068(40) 1.052(46)	$h_{A_1}^s(1)$ (NRQC	CD,HPQCD)	
HPQCD 17B FNAL/MILC 14	[618] [612]	$^{2+1+1}_{2+1}$	A A	∘ ★	*	* *	0 0	✓ ✓	$\mathcal{F}^{B \to D^*}(1)$ $\mathcal{F}^{B \to D^*}(1)$	$\begin{array}{c} 0.895(10)(24) \\ 0.906(4)(12) \end{array}$	$h_{A_1}(1)$ (HPQC $h_{A_1}(1)$ (NRQC	CD) CD, HPQCD)	
HPQCD 17B	[618]	2+1+1	А	0	*	*	0	✓	$\mathcal{F}^{B_s \to D_s^*}(1)$	0.883(12)(28)	$h_{A_1}(1)$ (Fermi 0.75	0.80 0.85 0.90 0.95	
HPQCD 15, HPQCD 17 [614 FNAL/MILC 15C	4, 616] [613]	$^{2+1}_{2+1}$	A A	∘ ★	0 0	∘ ★	0 0	1	R(D) R(D)	0.300(8) 0.299(11)	0.10		

▶ Please do cite calculations feeding into FLAG averages

[FLAG 2019] 24/26 outlook

introduction	$B_S \rightarrow K \ell \nu$	$B_S \rightarrow D_S \ell \nu$	FLAG	outlook
000000	0000000	000000	000	000

Outlook

- Second (third) entirely independent analysis completed
- ▶ In the final stages to complete $B_s \rightarrow K \ell \nu$ and $B_s \rightarrow D_s \ell \nu$ form factor calculation → As usual, carefully estimating all systematic uncertainties is tedious
- Our lattice calculation also includes
 - $\rightarrow B \rightarrow \pi \ell \nu, B \rightarrow \pi \ell^+ \ell^-$
 - $\rightarrow B \rightarrow K^* \ell^+ \ell^-$
 - $\rightarrow B \rightarrow D^{(*)} \ell \nu$
 - $\rightarrow B_s \rightarrow K^* \ell^+ \ell^-$
 - $\rightarrow B_s \rightarrow D_s^* \ell \nu$
 - $\to B_s \to \phi \ell^+ \ell^-$

 $\rightarrow \ldots$

- ▶ Current status $B_s \rightarrow K \ell \nu$ and $B_s \rightarrow D_s \ell \nu$: [arXiv:1903.02100]
- ▶ Future
 - \rightarrow Add $48^3\times96$ ensemble with physical pions
- Parallel efforts: SU(3) breaking ratios [arXiv:1812.08791]
 - \rightarrow Talk by J. Tobias Tsang

introduction	$B_S \rightarrow K \ell \nu$	$B_S \rightarrow D_S \ell \nu$	FLAG	outlook
000000	0000000	000000	000	000

Resources for RBC-UKQCD's calculation

USQCD: Ds, Bc, and pi0 cluster (Fermilab), qcd12s cluster (Jlab), skylake cluster (BNL) RBC qcdcl (RIKEN) and cuth (Columbia U) UK: ARCHER, Cirrus (EPCC) and DiRAC (UKQCD)

