Form-factors for semi-leptonic B decays

Oliver Witzel (RBC-UKQCD collaborations)

Beyond the Standard Model with precision flavour experiments MIAPP München, Germany April 30, 2019

 $\begin{array}{c} B_S \rightarrow K\ell\nu \\ 0000000 \end{array}$

 $B_s \rightarrow D_s \ell \nu$ 00000 more FF 00000000 FLAG 0000000 outlool

Nonperturbative Lattice QCD calculation

- ▶ Lattice QCD allows for first principle calculations
- ► Also in the nonperturbative regime
- Systematical procedures to improve uncertainties
- ▶ Requires large scale computing facilities

Lattice QCD

- \blacktriangleright Wick-rotate to Eucledian time t
 ightarrow i au
- Use path integral formalism

$$\langle \mathcal{O} \rangle_{\mathsf{E}} = \frac{1}{Z} \int \mathcal{D}[\psi, \overline{\psi}] \, \mathcal{D}[U] \, \mathcal{O}[\psi, \overline{\psi}, U] \, e^{-S_{\mathsf{E}}[\psi, \overline{\psi}, U]}$$

- Discretize space-time
- \Rightarrow Large but finite dimensional path integral
- \rightarrow Finite lattice spacing $a \rightarrow$ UV regulator
- \rightarrow Finite volume of length $L \rightarrow$ IR regulator

[ALCF]

[DiRAC

 $\begin{array}{c} B_S \rightarrow K\ell\nu \\ 0000000 \end{array}$

 $\begin{array}{c} B_S \rightarrow D_S \ell \nu \\ 0 0 0 0 0 \end{array}$

more FF 00000000 FLAG 0000000 outlook 000

Lattice QCD calculation

Simulate

- ▶ at finite lattice spacing a
- ▶ in a finite volume L^3
 - \Rightarrow discrete momenta $2\pi \vec{n}/L$
- lattice regularized
- ► bare input quark masses $am_{\ell}, am_s, am_c, am_b$ Mostly: $aM_{\pi} \neq aM_{\pi}^{phys}$

Desired result

- ▶ take $a \rightarrow 0$ limit
- ▶ take $L \to \infty$ limit
 - ightarrow continuous momenta $ec{p}$
- match to some continuum scheme
- ▶ physical quark masses $m_l = m_{u/d}^{\text{phys}}$, $m_s = m_s^{\text{phys}}$, $m_c = m_c^{\text{phys}}$, $m_b = m_b^{\text{phys}}$

- ▶ Need to choose gauge and fermion action
- ▶ Need to control all limits keeping FV and discretization effects under control
 - \rightarrow u quarks want large volume (large $L^3)$ such that $M_\pi \cdot L > 4$
 - $\rightarrow b$ quarks want fine lattice (small a) i.e. $am_b \ll 1$

introduction 0000000

 $\begin{array}{c} B_S \rightarrow K\ell\nu \\ 0000000 \end{array}$

 $B_s \rightarrow D_s \ell \nu$ 00000 more FF 00000000 FLAG 0000000 outlook

 $|V_{ub}|$ from exclusive semileptonic $B \rightarrow \pi \ell \nu$ decay

▶ Conventionally parametrized by (*B* meson at rest)

$$\begin{aligned} \frac{d\Gamma(B \to \pi \ell \nu)}{dq^2} &= \frac{G_F^2 |V_{ub}|^2}{24\pi^3} \frac{(q^2 - m_\ell^2)^2 \sqrt{E_\pi^2 - M_\pi^2}}{q^4 M_B^2} \\ \text{experiment} & \quad \mathsf{CKM} & \text{known} \\ & \times \left[\left(1 + \frac{m_\ell^2}{2q^2} \right) M_B^2 (E_\pi^2 - M_\pi^2) |f_+(q^2)|^2 + \frac{3m_\ell^2}{8q^2} (M_B^2 - M_\pi^2)^2 |f_0(q^2)|^2 \right], \end{aligned}$$

nonperturbative input

introduction 0000●000	$B_{S} \rightarrow K \ell \nu$	$\begin{array}{c} B_{\rm S} \rightarrow D_{\rm S} \ell \nu \\ 0 0 0 0 0 \end{array}$	more FF 00000000	FLAG 0000000	outle 00
$ V_{ub} $ from	exclusive				
$B o \pi$	$-\ell u$	ℓ	$B_s o K \ell u$	ℓ	
	W	ν	И		
в 🚃		π		 K	

- Only spectator quark differs
- \blacktriangleright Lattice QCD prefers s quark over u quark: statistically more precise, computationally cheaper
- ▶ B factories run at $\Upsilon(4s)$ threshold \Rightarrow B mesons
- ▶ LHC collisions create many B and B_s mesons which decay \Rightarrow LHCb
 - \rightarrow LHCb prefers the ratio $(B_s \rightarrow D_s \ell \nu)/(B_s \rightarrow K \ell \nu) \Rightarrow |V_{cb}/V_{ub}|$

introduction
00000000

B _s	\rightarrow	Kℓv	
00	00	000	

 $\begin{array}{c} B_{s} \rightarrow D_{s} \ell \nu \\ 0 0 0 0 0 \end{array}$

more FF 00000000 FLAG 000000 outlook 000

 $|V_{ub}|$ from exclusive $B \rightarrow \pi \ell \nu$

 $|V_{cb}|$ from exclusive

introduction	$B_S \rightarrow K \ell \nu$	$B_S \rightarrow D_S \ell \nu$
00000000	0000000	00000

more FF 00000000 FLAG 0000000 outlook

 $|V_{ub}|$ from exclusive semileptonic $B_s \to K \ell \nu$ decay

• Conventionally parametrized by $(B_s \text{ meson at rest})$

$$\frac{d\Gamma(B_s \to K\ell\nu)}{dq^2} = \frac{G_F^2 |V_{ub}|^2}{24\pi^3} \frac{(q^2 - m_\ell^2)^2 \sqrt{E_K^2 - M_K^2}}{q^4 M_{B_s}^2}$$

experiment
$$\times \left[\left(1 + \frac{m_\ell^2}{2q^2} \right) M_{B_s}^2 (E_K^2 - M_K^2) |f_+(q^2)|^2 + \frac{3m_\ell^2}{8q^2} (M_{B_s}^2 - M_K^2)^2 |f_0(q^2)|^2 \right]$$

nonperturbative input

 $\begin{array}{c} B_{\rm S} \rightarrow K\ell\nu \\ 0000000 \end{array}$

 $\begin{array}{c} B_S \rightarrow D_S \ell \nu \\ 0 0 0 0 0 \end{array}$

more FF 00000000 FLAG 0000000 outlook 000

Nonperturbative input

▶ Parametrizes interactions due to the (nonperturbative) strong force

- ▶ Use operator product expansion (OPE) to identify short distance contributions
- ▶ Calculate the flavor changing currents as point-like operators using lattice QCD

introduction	$B_S \rightarrow K \ell \nu$	$B_S \rightarrow D_S \ell \nu$
0000000	0000000	00000

more FF 00000000 FLAG 0000000 outlook

RBC-UKQCD's set-up

- ▶ RBC-UKQCD's 2+1 flavor domain-wall fermion and Iwasaki gauge action ensembles
 - → Three lattice spacings *a* ~ 0.11 fm, 0.08 fm, 0.07 fm; one ensemble with physical pions [PRD 78 (2008) 114509][PRD 83 (2011) 074508][PRD 93 (2016) 074505][JHEP 1712 (2017) 008]

introduction
0000000

Bs	\rightarrow	Kℓν
00	00	000

 $\begin{array}{c} B_S \rightarrow D_S \ell \nu \\ 0 0 0 0 0 \end{array}$

more FF 00000000 FLAG 0000000 outlook

RBC-UKQCD's set-up

	Lä	$a^{-1}({\sf GeV})$) am _l	am _s	$M_{\pi}({ m MeV})$	# configs.	#source	S
C1	24	1.784	0.005	0.040	338	1636	1	[PRD 78 (2008) 114509]
C2	24	1.784	0.010	0.040	434	1419	1	[PRD 78 (2008) 114509]
M1	32	2.383	0.004	0.030	301	628	2	[PRD 83 (2011) 074508]
M2	32	2.383	0.006	0.030	362	889	2	[PRD 83 (2011) 074508]
М3	32	2.383	0.008	0.030	411	544	2	[PRD 83 (2011) 074508]
C0	48	1.730	0.00078	0.0362	139	40	81/1*	[PRD 93 (2016) 074505]
M0	64	2.359	0.000678	0.02661	139			[PRD 93 (2016) 074505]
F1	48	2.774	0.002144	0.02144	234	98	24	[JHEP 1712 (2017) 008]

* All mode averaging: 81 "sloppy" and 1 "exact" solve [Blum et al. PRD 88 (2012) 094503]

▶ Lattice spacing determined from combined analysis [Blum et al. PRD 93 (2016) 074505]

ho a: \sim 0.11 fm, \sim 0.08 fm, \sim 0.07 fm

ntroduction	$B_S \rightarrow K\ell$
0000000	000000

 $B_s \rightarrow D_s \ell \nu$ 00000 more FF 00000000 FLAG 0000000 outlook

RBC-UKQCD's set-up

- ▶ RBC-UKQCD's 2+1 flavor domain-wall fermion and Iwasaki gauge action ensembles
 - → Three lattice spacings *a* ~ 0.11 fm, 0.08 fm, 0.07 fm; one ensemble with physical pions [PRD 78 (2008) 114509][PRD 83 (2011) 074508][PRD 93 (2016) 074505][JHEP 1712 (2017) 008]
- ► Unitary and partially quenched domain-wall up/down quarks [Kaplan PLB 288 (1992) 342], [Shamir NPB 406 (1993) 90]
- Domain-wall strange quarks at/near the physical value
- ightarrow Additional challenge $m_c = 1.28 {
 m GeV} \sim ~~270 imes m_d$

 $m_b = 4.18 {
m GeV} \sim 1000 imes m_d$

► Charm: Möbius domain-wall fermions optimized for heavy quarks [Boyle et al. JHEP 1604 (2016) 037]
→ Simulate 3 or 2 charm-like masses then extrapolate/interpolate

RBC-UKQCD's set-up

- ► Charm: Möbius domain-wall fermions optimized for heavy quarks [Boyle et al. JHEP 1604 (2016) 037]
 → Simulate 3 or 2 charm-like masses then extrapolate/interpolate
- ▶ Effective relativistic heavy quark (RHQ) action for bottom quarks

[Christ et al. PRD 76 (2007) 074505], [Lin and Christ PRD 76 (2007) 074506]

- \rightarrow Builds upon Fermilab approach [El-Khadra et al. PRD 55 (1997) 3933]
- \rightarrow Allows to tune the three parameters (m_0a , c_P , ζ) nonperturbatively [PRD 86 (2012) 116003]
- ightarrow Smooth continuum limit; heavy quark treated to all orders in $(m_b a)^n$
- → Mostly nonperturbative renormalization [Hashimoto et al. PRD61 (1999) 014502] [EI-Khadra et al. PRD64 (2001) 014502]

$$Z_V^{bl} = \varrho \sqrt{Z_V^{ll} Z_V^{bb}}$$

outlook

in collaboration with Jonathan M. Flynn, Ryan. C. Hill, Taku Izubuchi, Andreas Jüttner Christoph Lehner, J. Tobias Tsang, Amarji Soni $\begin{array}{cccc} \text{introduction} & B_{\mathsf{S}} \to \mathcal{K}\ell\nu & B_{\mathsf{S}} \to D_{\mathsf{S}}\ell\nu & \text{more FF} & \text{FLAG} \\ 00000000 & 0 \bullet 00000 & 000000 & 0000000 & 0000000 \end{array}$

$B_s \to K \ell \nu$ form factors

▶ Parametrize the hadronic matrix element for the flavor changing vector current V^{μ} in terms of the form factors $f_+(q^2)$ and $f_0(q^2)$

► Calculate 3-point function by

- \rightarrow Inserting a quark source for a strange quark propagator at t_0
- \rightarrow Allow it to propagate to t_{sink} , turn it into a sequential source for a b quark
- \rightarrow Use a "light" quark propagating from t_0 and contract both at t with $t_0 \leq t \leq t_{\textit{sink}}$

outlook

introduction	$B_s \rightarrow K \ell \nu$	$B_s \rightarrow D_s \ell \nu$	more FF	FLAG	outloo
0000000	000000	00000	0000000	000000	000

$B_s \rightarrow K \ell \nu$ form factors: F1 ensemble

 \blacktriangleright Comparison of fit to the ground state only with fit including one excited state term for K and B_s

▶ Updating calculation [PRD 91 (2015) 074510] with improved values for a^{-1} and RHQ parameters

•
$$f_{pole}(M_K, E_K, a^2) = \frac{1}{E_K + \Delta} c^{(1)} \times \left[1 + \frac{\delta f}{(4\pi f)^2} + c^{(2)} \frac{M_K^2}{\Lambda^2} + c^{(3)} \frac{E_K}{\Lambda} + c^{(4)} \frac{E_K^2}{\Lambda^2} + c^{(5)} \frac{a^2}{\Lambda^2 a_{32}^4} \right]$$

 $ightarrow \delta f$ non-analytic logs of the kaon mass and hard-kaon limit is taken by $M_K/E_K
ightarrow 0$

 $B_s \rightarrow K\ell\nu$ 0000000 $B_S \rightarrow D_S \ell \nu$ 00000

Estimate systematic errors due to

- Chiral-continuum extrapolation
 - \rightarrow Use alternative fit functions
 - \rightarrow Impose different cuts on the data
- ► Discretization errors of light and heavy quarks → Estimate via power-counting
- ► Uncertainty of the renormalization factors → Estimate effect of higher loop corrections
- ▶ Finite volume, iso-spin breaking, ...
- Uncertainty due to RHQ parameters and lattice spacing (a^{-1})
 - \rightarrow Carry out additional simulations to test effects on form factors
- Uncertainty of strange quark mass
 - \rightarrow Repeat simulation with different valence quark mass

(plot still incomplete)

 $B_s \rightarrow K \ell \nu$ 0000000 $B_S \rightarrow D_S \ell \nu$ 00000 more FF 00000000 FLAG 0000000 outlook

Kinematical extrapolation (*z*-expansion)

 \blacktriangleright Map q^2 to z with minimized magnitude in the semileptonic region: $|z| \leq 0.146$

$$z(q^2,t_0)=rac{\sqrt{1-q^2/t_+}-\sqrt{1-t_0/t_+}}{\sqrt{1-q^2/t_+}+\sqrt{1-t_0/t_+}}$$
 with

$$egin{aligned} t_\pm &= (M_B \pm M_\pi)^2 \ t_0 &\equiv t_{
m opt} = (M_B + M_\pi) (\sqrt{M_B} - \sqrt{M_\pi})^2 \end{aligned}$$

[Boyd, Grinstein, Lebed, PRL 74 (1995) 4603] [Bourrely, Caprini, Lellouch, PRD 79 (2009) 013008]

- **•** Express f_+ as convergent power series
- f_0 is analytic, except for B^* pole
- ▶ BCL with poles $M_+ = B^* = 5.33$ GeV and $M_0 = 5.63$ GeV
- ▶ Exploit kinematic constraint $f_+ = f_0 \Big|_{g^2 = 0}$
- \rightarrow Include HQ power counting to constrain size of f_+ coefficients
- Only some systematics included!

 $B_s \rightarrow K \ell \nu$ 00000 \bullet 0 $B_S \rightarrow D_S \ell \nu$ 00000 more FF 00000000 FLAG 00000 outlook

Kinematical extrapolation (*z*-expansion)

 \blacktriangleright Map q^2 to z with minimized magnitude in the semileptonic region: $|z| \leq 0.146$

$$z(q^2,t_0)=rac{\sqrt{1-q^2/t_+}-\sqrt{1-t_0/t_+}}{\sqrt{1-q^2/t_+}+\sqrt{1-t_0/t_+}}$$
 with

$$t_{\pm} = (M_B \pm M_{\pi})^2 \ t_0 \equiv t_{
m opt} = (M_B + M_{\pi})(\sqrt{M_B} - \sqrt{M_{\pi}})^2$$

[Boyd, Grinstein, Lebed, PRL 74 (1995) 4603] [Bourrely, Caprini, Lellouch, PRD 79 (2009) 013008]

- ▶ Allows to compare shape of form factors
 - → Obtained by other lattice calculations [Bouchard et al. PRD 90 (2014) 054506] [Bazavov et al. arXiv:1901.02561]
 - \rightarrow Predicted by QCD sum rules and alike
- ► Combination with experiment leads to the overall normalization: |V_{ub}|
- Only some systematics included!

Phenomenological interpretation (2015) [PRD 91 (2015) 074510]

 \blacktriangleright Predict SM differential branching fractions using $|V_{ub}|$ as input for lepton = μ or au

outlook

 $\begin{array}{ccc} \text{introduction} & B_{\text{s}} \rightarrow \mathcal{K}\ell\nu & B_{\text{s}} \rightarrow D_{\text{s}}\ell\nu & \text{more FF} & \text{FLAG} \\ 0000000 & 00000 \bullet & 00000 & 0000000 & 0000000 \end{array}$

Phenomenological interpretation (2015) [PRD 91 (2015) 074510]

- \blacktriangleright Predict SM differential branching fractions using $|V_{ub}|$ as input for lepton = μ or au
- ▶ Predict ratio of branching fractions → LFUV

$$R_{\pi}^{ au/\mu}=0.69(19)$$

$$R_K^{ au/\mu} = 0.77(12)$$

outlook

introduction $B_s \rightarrow K\ell\nu$ $B_s \rightarrow D_s\ell\nu$ more FF00000000000000000000000000000

FLAG 0000000 outlook

Phenomenological interpretation (2015) [PRD 91 (2015) 074510]

- \blacktriangleright Predict SM differential branching fractions using $|V_{ub}|$ as input for lepton $=\mu$ or au
- ▶ Predict ratio of branching fractions → LFUV

in collaboration with Jonathan M. Flynn, Ryan. C. Hill, Taku Izubuchi, Andreas Jüttner Christoph Lehner, J. Tobias Tsang, Amarji Soni

introduction	$B_S \rightarrow K \ell \nu$	$B_s \rightarrow D_s \ell \nu$	more FF	FLAG
0000000	000000	0000	0000000	00000

$|V_{cb}|$ from exclusive semileptonic $B_s \rightarrow D_s \ell \nu$ decay

• Conventionally parametrized by $(B_s \text{ meson at rest})$

outlook

$$f(q^2, a, M_{\pi}, M_{D_s}) = \frac{\alpha_0 + \alpha_1 M_{D_s} + \alpha_2 a^2 + \alpha_3 M_{\pi}^2}{1 + \alpha_4 q^2 / M_{B_s}^2}$$

▶ Extrapolation to the continuum limit with physical quark masses

Error budget still work in progress

introduction	$B_S \rightarrow K \ell \nu$	$B_s \rightarrow D_s \ell \nu$	more FF	FLAG	outlook
0000000	0000000	00000	0000000	0000000	000

z-expansion

 \blacktriangleright BCL with poles $M_+ = B_c^* = 6.33$ GeV and $M_0 = 6.42$ GeV

Comparison with CLN in progress

$\begin{array}{c} B_S \rightarrow K\ell\nu \\ 0000000 \end{array}$

 $B_s \rightarrow D_s \ell \nu$ 0000 more FF 00000000 FLAG 0000000 outlook

Status $B_s ightarrow K \ell u$ and $B_s ightarrow D_s \ell u$

- $B_s
 ightarrow K \ell
 u$ chiral-continuum extrapolation
- $ightarrow B_s
 ightarrow D_s \ell
 u$ global fit (M_π , M_{D_s} , a^2 , q^2)
- Extract synthetic data points
- Full systematic error budget
 - \rightarrow RHQ parameter tuning
 - \rightarrow Continuum extrapolation:
 - cut to data set, different fit functions, ...
 - \rightarrow Charm extrapolation
 - \rightarrow FV, higher order disc. effects, isospin,
 - s-quark mass tuning, ...

- ▶ *z*-expansion over full q^2 range
 - \rightarrow BGL vs. BCL
 - ightarrow Test CLN for $B_s
 ightarrow D_s \ell
 u$
 - \rightarrow Number of synthetic data points
 - \rightarrow Different truncations
 - ightarrow Incl. vs. excludig $f_+ = f_0 \Big|_{q^2=0}$
- Phenomenology: $R(K), R(D_s), \ldots$

more form factors

▶ If the daughter quark is a d-quark, we have a FCNC decay at loop-level → Need to implement additional operators

• Dominant contributions at short distance: f_0 , f_+ , and f_T

$$\langle \pi(k)|i\bar{d}\sigma^{\mu
u}b(p)|B
angle = 2rac{p^{\mu}k^{
u}-p^{
u}k^{\mu}}{M_B+M_\pi}f_T(q^2)$$

 $B_s \rightarrow K \ell \nu$ 0000000 $B_s \rightarrow D_s \ell \nu$ 00000 more FF 00000000 FLAG 0000000 outlook 000

$B \rightarrow D^* \ell \nu$ form factors

▶ Vector final state with narrow width approximation

$$\begin{split} \langle D^*(k,\lambda)|\bar{c}\gamma^{\mu}b|B(p)\rangle =& f_V \frac{2i\epsilon^{\mu\nu\rho\sigma}\varepsilon^*_{\nu}k_{\rho}p_{\sigma}}{M_B + M_D^*} \\ \langle D^*(k,\lambda)|\bar{c}\gamma^{\mu}\gamma_5b|B(p)\rangle =& f_{A_0}(q^2)\frac{2M_{D^*}\varepsilon^*\cdot q}{q^2}q^{\mu} \\ &+ f_{A_1}(q^2)(M_B + M_{D^*})\left[\varepsilon^{*\mu} - \frac{\varepsilon^*\cdot q}{q^2}q^{\mu}\right] \\ &- f_{A_2}(q^2)\frac{\varepsilon^*\cdot q}{M_B + M_{D^*}}\left[k^{\mu} + p^{\mu} - \frac{M_B^2 - M_{D^*}^2}{q^2}q^{\mu}\right] \end{split}$$

- ▶ Vector final state treated in narrow width approximation
- Effective Hamiltonian

$$\mathcal{H}^{b
ightarrow s}_{ ext{eff}} = -rac{4G_F}{\sqrt{2}} V^*_{ts} V_{tb} \sum_i^{10} C_i O^{(\prime)}_i$$

Leading contributions at short distance

$$O_{7}^{(\prime)} = \frac{m_{b}e}{16\pi^{2}}\bar{s}\sigma^{\mu\nu}P_{R(L)}bF_{\mu\nu} \qquad O_{9}^{(\prime)} = \frac{e^{2}}{16\pi^{2}}\bar{s}\gamma^{\mu}P_{L(R)}b\bar{\ell}\gamma_{\mu}\ell \qquad O_{10}^{(\prime)} = \frac{e^{2}}{16\pi^{2}}\bar{s}\gamma^{\mu}P_{L(R)}b\bar{\ell}\gamma_{\mu}\gamma^{5}\ell$$

introduction
00000000

Bs	\rightarrow	$K\ell\nu$	
00	00	000	

 $\begin{array}{c} B_S \rightarrow D_S \ell \nu \\ 0 0 0 0 0 \end{array}$

more FF 000000000 FLAG 0000000 outlook

Seven form factors

$$\begin{split} \langle \phi(k,\lambda) | \bar{s}\gamma^{\mu} b | B_{s}(p) \rangle = & f_{V}(q^{2}) \frac{2i\epsilon^{\mu\nu\rho\sigma} \varepsilon_{\nu}^{*} k_{\rho} p_{\sigma}}{M_{B_{s}} + M_{\phi}} \\ \langle \phi(k,\lambda) | \bar{s}\gamma^{\mu}\gamma_{5} b | B_{s}(p) \rangle = & f_{A_{0}}(q^{2}) \frac{2M_{\phi}\varepsilon^{*} \cdot q}{q^{2}} q^{\mu} \\ & + f_{A_{1}}(q^{2})(M_{B_{s}} + M_{\phi}) \left[\varepsilon^{*\mu} - \frac{\varepsilon^{*} \cdot q}{q^{2}} q^{\mu} \right] \\ & - f_{A_{2}}(q^{2}) \frac{\varepsilon^{*} \cdot q}{M_{B_{s}} + M_{\phi}} \left[k^{\mu} + p^{\mu} - \frac{M_{B_{s}}^{2} - M_{\phi}^{2}}{q^{2}} q^{\mu} \right] \\ & q_{\nu} \langle \phi(k,\lambda) | \bar{s}\sigma^{\nu\mu} b | B_{s}(p) \rangle = 2f_{T_{1}}(q^{2})\epsilon^{\mu\rho\tau\sigma}\varepsilon_{\rho}^{*}k_{\tau}p_{\sigma} , \\ & q_{\nu} \langle \phi(k,\lambda) | \bar{s}\sigma^{\nu\mu}\gamma^{5}b | B_{s}(p) \rangle = if_{T_{2}}(q^{2}) \left[\varepsilon^{*\mu}(M_{B_{s}}^{2} - M_{\phi}^{2}) - (\varepsilon^{*} \cdot q)(p+k)^{\mu} \right] \\ & + if_{T_{3}}(q^{2})(\varepsilon^{*} \cdot q) \left[q^{\mu} - \frac{q^{2}}{M_{B_{s}}^{2} - M_{\phi}^{2}}(p+k)^{\mu} \right] \end{split}$$

introduction	$B_S \rightarrow K \ell \nu$	$B_S \rightarrow D_S \ell \nu$	more FF	FLAG	outlook
0000000	0000000	00000	00000000	000000	000

 $B_s \rightarrow \phi \ell \ell$: seven form factors ($a^{-1} = 1.784 \text{ GeV}$, $am_l^{\text{sea}} = 0.005$, $am_s = 0.03224$)

introduction	$B_s \rightarrow K \ell \nu$	$B_s \rightarrow D_s \ell \nu$	more FF	FLAG
0000000	0000000	00000	0000000	0000000

$B_s \rightarrow \phi \ell^+ \ell^-$: first attempt to use *z*-parametrization

outlook

Flavor Lattice Averaging Group

- Summary table indicating quality of key features
- Combined analysis accounting for correlations (if needed)
- FINAL/MILC also $B \rightarrow \pi \ell^+ \ell^-$ (FCNC)
- ▶ Please do cite calculations feeding into FLAG averages

- ▶ Combination of lattice average with experimental results
- Extraction of $|V_{ub}|$
- FINAL/MILC also $B \to \pi \ell^+ \ell^-$ (FCNC)
- ▶ Please do cite calculations feeding into FLAG averages

▶ Please do cite calculations feeding into FLAG averages

[FLAG 2019]

▶ Please do cite calculations feeding into FLAG averages

[FLAG 2019]

introduction
00000000

FNAL/MILC 15C

 $B \to D_{(s)}^{(*)} \ell \nu$

Bs	-	÷	K	
00	0	0	00	

 $B_s \rightarrow D_s \ell \nu$ 00000

 $G^{B \rightarrow D}(1)$

 $G^{B \rightarrow D}(1)$

 $G^{B \rightarrow D}(1)$

R(D)

w = 1 form factor / ratio

1.035(40)

1.033(95)

0.299(11)

1.054(4)(8)

Prinette Print

more FF 00000000 FLAG 0000**0**00 outlook

• New HPQCD $B_s \rightarrow D_s^* \ell \nu$ [arXiv:1904.02046]

Please	do	cite	calculations	feeding	into	FLAG	averages

А

[FLAG 2019] 32/36

continuur etrapolation Publication status ding extraologic hite volume Collaboration Ref. N_{ℓ} HPQCD 15, HPQCD 17 [614, 616] 2+1A FNAL/MILC 15C [613] 2+1А Atoui 13 [610] 2 Α

[613]

2+1

HPQCD 15, HPQCD 17 [614 Atoui 13	, 616] [610]	$^{2+1}_{2}$	A A	∘ ★	0 0	∘ ★	o 	\checkmark	$\mathcal{G}^{B_s \to D_s}(1)$ $\mathcal{G}^{B_s \to D_s}(1)$	1.068(40) 1.052(46)
HPQCD 17B	[618]	2+1+1	А	0	*	*	0	~	$\mathcal{F}^{B \rightarrow D^*}(1)$	0.895(10)(24)
FNAL/MILC 14	[612]	2 + 1	А	*	0	*	0	\checkmark	$\mathcal{F}^{B \to D^*}(1)$	0.906(4)(12)
HPQCD 17B	[618]	2+1+1	А	0	*	*	0	√	$\mathcal{F}^{B_s \to D_s^*}(1)$	0.883(12)(28)
HPQCD 15, HPQCD 17 [614	, 616]	2+1	А	0	0	0	0	<	R(D)	0.300(8)

▶ Please do cite calculations feeding into FLAG averages

[FLAG 2019]

 $\begin{array}{c} B_S \to K\ell\nu \\ 0000000 \end{array}$

 $B_S \rightarrow D_S \ell \nu$ 00000 more FF 00000000 FLAG 0000000 outlook

Other calculations (likely incomplete)

▶ FCNC decays with vector final state

 \rightarrow Seven form factors $B \rightarrow K^* \ell^+ \ell^-$ and $B_{\rm s} \rightarrow \phi \ell^+ \ell^-$

[Horgan, Liu, Meinel, and Wingate PRD89 (2014) 090501][PoS Lattice2014 (2015) 372]

→ Angular analysis [PRL112 (2014) 212003]

Exclusive baryonic decays

 $\rightarrow \Lambda_b \rightarrow \Lambda_c \ell \nu$ and $\Lambda_b \rightarrow p \ell \nu \Rightarrow |V_{cb}|/|V_{ub}|$ [Detmold, Lehner, Meinel, PRD92 (2015) 034503]

 $ightarrow \Lambda_b
ightarrow \Lambda_c au
u$ [Datta et al. JHEP08(2017)131]

outlook

 $\begin{array}{c} B_S \rightarrow K\ell\nu \\ 0000000 \end{array}$

 $B_s \rightarrow D_s \ell \nu$ 00000 more FF 00000000 FLAG 0000000 outlook 000

Outlook

- ▶ Many calculation for exclusive decays are on it's way
- ▶ Updates will be reported Lattice 2019 (June 16-22, 2019)
- \blacktriangleright New ideas to compute inclusive decays using lattice techniques

[Hashimoto PTEP 2017 (2017) 053B03] [Hansen, Meyer, Robaina arXiv:1704.08993]

 $B_s \rightarrow K \ell \nu$

 $B_S \rightarrow D_S \ell \nu$ 00000 more FF 00000000 FLAG 0000000 outlook

Outlook: RBC-UKQCD

- Second (third) entirely independent analysis completed
- ▶ In the final stages to complete $B_s \rightarrow K \ell \nu$ and $B_s \rightarrow D_s \ell \nu$ form factor calculation
 - \rightarrow As usual, carefully estimating all systematic uncertainties is tedious
- Our lattice calculation also includes $\rightarrow B \rightarrow \pi \ell \nu, B \rightarrow \pi \ell^+ \ell^-$
 - $\rightarrow B \rightarrow K^* \ell^+ \ell^-$
 - $\rightarrow B \rightarrow D^{(*)} \ell \nu$
 - $\rightarrow B_s \rightarrow K^* \ell^+ \ell^-$
 - $\rightarrow B_s \rightarrow D_s^* \ell \nu$
 - $\rightarrow B_{\rm s} \rightarrow \phi \ell^+ \ell^-$
 - $\rightarrow \dots$

- ▶ Current status $B_s \rightarrow K \ell \nu$ and $B_s \rightarrow D_s \ell \nu$: [arXiv:1903.02100]
- ▶ Future → Add $48^3 \times 96$ ensemble with physical pions
- Parallel efforts: SU(3) breaking ratios [arXiv:1812.08791]

Resources for RBC-UKQCD's calculation

USQCD: Ds, Bc, and pi0 cluster (Fermilab), qcd12s cluster (Jlab), skylake cluster (BNL) RBC qcdcl (RIKEN) and cuth (Columbia U) UK: ARCHER, Cirrus (EPCC) and DiRAC (UKQCD)