Exploring AMA

summary

Analyzing AMA data on $48^3\times96$ lattices

Oliver Witzel Higgs Centre for Theoretical Physics

QCDNA X, Coimbra, Portugal, June 27-29, 2017

introduction
•0

Exploring AMA

summary

The ensemble

- \blacktriangleright 48³ \times 96, MDWF, physical pions, $a^{-1}=1.730$ GeV, spatial box 5.47 fm
- ► 1560 thermalized trajectories (configurations 640 2200) → Use 40 configurations [640:40:2200]
- Inverting physical light quarks is expensive
- Deflation/multi-grid methods make it affordable
- Favored to have many sources per configurations but smaller set of configurations
- \sim Not yet the of size Lüscher's master field simulation [Talk Lattice 2017]
- \sim Not going to restrict to sub-volumes

Run 1 00000 Exploring AMA

All-mode Averaging (AMA)

- Idea: Reduce costs for inversions by exploiting translational invariance [Blum, Izubuchi, Shintani PRD88 (2013) 094503][Shintani et al. PRD91 (2015) 114511]
- \rightarrow Compute many lower precision propagators ("sloppy solves")
- \rightarrow Compute a few high precision propagators ("exact solves")
- \rightarrow Correct the result

$$\mathcal{O}_{G}^{(\mathsf{appx}),\mathsf{g}} = \frac{1}{N_{G}} \sum_{g \in G} \mathcal{O}^{(\mathsf{appx}),g}$$
$$\mathcal{O}^{(\mathsf{rest})} = \mathcal{O} - \mathcal{O}^{(\mathsf{appx})}$$
$$\mathcal{O}^{(\mathsf{imp})} = \mathcal{O}^{(\mathsf{rest})} + \mathcal{O}_{G}^{(\mathsf{appx})}$$

ntroduction		
00		

Exploring AMA

summary

Set-up

- ▶ 81 sloppy solves and 1 exact solve at (0,0,0,0)
- ▶ evenly distributed on a hypercube; point-source u/d,s; Gaussian source b
- ▶ x, y, z = $\{0, 16, 32\}$
- ▶ $t = \{0, 32, 64\}$

Run 1 00000 Exploring AMA

First Results (Lattice 2015)

- Statistical errors too large
- Difficult to carry our correlated fits

 $\rightarrow 1/N = 1/40 \sim$ rather large fluctuations of the variance-covariance matrix

- All analysis carried out using single-elimination jackknife
- ▶ Fixed fit interval [13:25] for bottom-strange correlators

summarv

ntroduction	Run 1	Exploring AMA	summary
00	0000	0000000	00

Comparison with data at unphysically heavy pion masses

[PRD 91 (2015) 054502]

- \blacktriangleright 48³ data points not included in the fit
- Besides other issues, error bars too large

introduction	
00	

Exploring AMA

summary

Options for improvement

- ▶ Fill-in: calculate on every 20th configuration
- \rightarrow Issue with autocorrelation between configurations? decorrelated?
- \rightarrow Requires to compute eigenvectors on more configurations (higher costs)

- ▶ More sources per configuration
- \rightarrow Reuse expensive eigenvectors
- \rightarrow How independent are the sources?
- \rightarrow Will that improve the fitting difficulties?

introduction
00

Exploring AMA

summary

More sources per configuration

- ▶ 162 sloppy and 6 exact solves per configuration
- ▶ x, y, z = $\{0, 16, 32\}$
- $\blacktriangleright t = \{0, 16, 32, 48, 64, 80\}$
- ▶ ONLY strange quark propagators generated yet

intro	du	ct	ior
00			

Exploring AMA

summary

- When computing 2-point or 3-point correlation functions, we are always performing a spatial sum
 - \rightarrow Lüscher's sub-volumes may help
 - \rightarrow Our volume would likely be too small
- ▶ How independent are the different time planes?
- At which data should we look?

introd	luc	tior
00		

Exploring AMA

summary

- When computing 2-point or 3-point correlation functions, we are always performing a spatial sum
 - → Lüscher's sub-volumes may help
 - \rightarrow Our volume would likely be too small
- ▶ How independent are the different time planes?
- ▶ At which data should we look?
 - \rightarrow Depends on your problem of interest
 - \rightarrow Keep it simply: look at 2-point correlators

introductio	n
00	

Exploring AMA

summary

- When computing 2-point or 3-point correlation functions, we are always performing a spatial sum
 - → Lüscher's sub-volumes may help
 - \rightarrow Our volume would likely be too small
- ▶ How independent are the different time planes?
- ► At which data should we look?
 - $_{
 m
 ightarrow B}
 ightarrow \pi \ell
 u$: bottom-light and light-light 2-point correlators
 - $\rightarrow M_B, f_B$: bottom-light 2-point correlators
 - \sim Worst signal to noise ratio in bottom-light correlators
 - \sim Slowest exponential decay in light-light correlators
 - 4 Insufficient light quark propagators available 4

introd	luctior
00	

Exploring AMA

summary

- When computing 2-point or 3-point correlation functions, we are always performing a spatial sum
 - \rightarrow Lüscher's sub-volumes may help
 - \rightarrow Our volume would likely be too small
- ▶ How independent are the different time planes?
- ▶ At which data should we look?
 - $\rightarrow \textit{B}_{s} \rightarrow \textit{K}\ell\nu$: bottom-strange and strange-strange 2-point correlators
 - $\rightarrow M_{B_s}, f_{B_s}$: bottom-strange 2-point correlators

introd	luctior
00	

Exploring AMA

summary

- When computing 2-point or 3-point correlation functions, we are always performing a spatial sum
 - → Lüscher's sub-volumes may help
 - \rightarrow Our volume would likely be too small
- ▶ How independent are the different time planes?
- ▶ At which data should we look?
 - $_{
 m
 ightarrow B_{s}}
 ightarrow {\it K}\ell
 u$: bottom-strange and strange-strange 2-point correlators
 - $\rightarrow M_{B_s}, f_{B_s}$: bottom-strange 2-point correlators
 - \sim bottom-strange 2-point correlators readily available

Run 1 00000 Exploring AMA

summary

Bottom-strange 2-point function (ps-ps)

- Steep, monotonic exponential decay
- ► T=96, anti-periodic BC

Run 1 00000 Exploring AMA

Bottom-strange 2-point function (ps-ps)

- Steep, monotonic exponential decay
- ▶ T=96, anti-periodic BC
- Centered for t = 0
 - → Forward and backward propagation
- Signal has decayed by ~ 10 orders at first "crossing" with another time source

summary

Run 1 00000 Exploring AMA

summary

Bottom-strange 2-point function (ps-ps)

- Steep, monotonic exponential decay
- ► T=96, anti-periodic BC
- \blacktriangleright Folded at T/2
- Signal region

 $t_{\rm src} + [13:25]$

How correlated are the six different time planes?

• Compute AMA values for six time planes i.e. $6 \times (1 \oplus 27)$ sources: N = 40; $r, s = \{0, 16, 32, 48, 64, 80\}$, $t = 0, 1, 2, \dots, 48$

▶ Mean value
$$ar{y}_r(t) = rac{1}{N} \sum_{n=1}^N y_r(t,n)$$

Variance-covariance matrix

$$V_{rs}(t) = \frac{1}{N(N-1)} \sum_{n=1}^{N} (\bar{y}_r(t) - y_r(t,n)) (\bar{y}_s(t) - y_s(t,n))$$

▶ Correlation matrix (normalized values from -1, ..., 1)

$$C_{rs}(t) = rac{V_{rs}(t)}{\sqrt{V_{rr}(t)}\sqrt{V_{ss}(t)}}$$

introduction	Run 1	Exploring AMA	summary
00	00000	0000000	00

Correlations between time planes using $6 \times (1 \oplus 27)$

time slice 20

introduction	
00	

Exploring AMA

summary

Correlations between the time planes

▶ *N* = 40, *t* = 14

Run 1 00000 Exploring AMA

summary

Comparison for M_{B_s}

► Average time planes 40 × (6 ⊕ 162) ▶ Treat time planes as independent $(40 \times 6) \times (1 \oplus 27)$

▶ Central values agree (2015: $E_B^{\text{eff}}(t, p^2 = 0) = 3.1037(26), p = 8\%$)

Treating time planes independently leads to 1/2 of the statistical error and fit quality improves

Run 1 00000 Exploring AMA

summary

Comparison for Φ_{B_s}

► Average time planes 40 × (6 ⊕ 162) ► Treat time planes as independent $(40 \times 6) \times (1 \oplus 27)$

- ▶ 2015: $\Phi_s/M_{B_s}^{3/2} = 0.04704(90)$
- \blacktriangleright Central values differ by ${\sim}2$ sigmas

Statistical errors are similar; fit quality improved

Run 1 00000 Exploring AMA

summary

$[40 \times (6 \oplus 162)]$ vs. $[(40 \times 6) \times (1 \oplus 27)]$

- Data points have similar size errors
- Correlated fit improved

- ▶ Why shift in central values???
- Data points have smaller errors
- Correlated fit looks better

Exploring AMA

Remarks

- Doubling the number of sources reduces statistical uncertainties!
- ▶ Different time planes appear to be relatively independent
- ▶ Treating time sources as independent, improves correlated fits
- ▶ Need to understand shift in decay amplitudes
- ▶ Next check correlations for strange-strange 2-point functions
- Try "replica analysis" based on UWerr (Γ function method)
- ▶ Bootstrap analysis may also be superior given the small sample size
- Will it carry over to pions? $(B \rightarrow \pi \ell \nu)$
- ⇒ Generate more physical light quark propagators!

Exploring AMA

Resources and Acknowledgments

USQCD: Ds, Bc, and pi0 cluster (Fermilab), qcd12s cluster (Jlab) RBC qcdcl (RIKEN) and cuth (Columbia U) UK: ARCHER (EPCC) and DiRAC (UKQCD)

