Analyzing AMA data on $48^{3} \times 96$ lattices

Oliver Witzel
Higgs Centre for Theoretical Physics

THE UNIVERSITY of EDINBURGH

QCDNA X, Coimbra, Portugal, June 27-29, 2017

The ensemble

- $48^{3} \times 96$, MDWF, physical pions, $a^{-1}=1.730 \mathrm{GeV}$, spatial box 5.47 fm
- 1560 thermalized trajectories (configurations 640-2200)
\rightarrow Use 40 configurations [640:40:2200]
- Inverting physical light quarks is expensive
- Deflation/multi-grid methods make it affordable
- Favored to have many sources per configurations but smaller set of configurations
\sim Not yet the of size Lüscher's master field simulation [Talk Lattice 2017]
\sim Not going to restrict to sub-volumes

All-mode Averaging (AMA)

Idea: Reduce costs for inversions by exploiting translational invariance [Blum, Izubuchi, Shintani PRD88 (2013) 094503][Shintani et al. PRD91 (2015) 114511]
\rightarrow Compute many lower precision propagators ("sloppy solves")
\rightarrow Compute a few high precision propagators ("exact solves")
\rightarrow Correct the result

$$
\begin{aligned}
\mathcal{O}_{G}^{(\mathrm{appx}), \mathrm{g}} & =\frac{1}{N_{G}} \sum_{g \in G} \mathcal{O}^{(a p p x), g} \\
\mathcal{O}^{(\mathrm{rest})} & =\mathcal{O}-\mathcal{O}^{(\mathrm{appx})} \\
\mathcal{O}^{(\mathrm{mpp})} & =\mathcal{O}^{(\mathrm{rest})}+\mathcal{O}_{G}^{(\mathrm{appx})}
\end{aligned}
$$

Set-up

- 81 sloppy solves and 1 exact solve at ($0,0,0,0$)
- evenly distributed on a hypercube; point-source $u / d, s$; Gaussian source b
- $x, y, z=\{0,16,32\}$
- $t=\{0,32,64\}$

First Results (Lattice 2015)

- Decay amplitudes: $Z_{\Phi_{B_{q}}} \Phi_{B_{q}} a^{-3 / 2} / \sqrt{M_{B_{q}}}=f_{B_{(s)}}$

- Statistical errors too large
- Difficult to carry our correlated fits
$\rightarrow 1 / N=1 / 40 \sim$ rather large fluctuations of the variance-covariance matrix
- All analysis carried out using single-elimination jackknife
- Fixed fit interval [13:25] for bottom-strange correlators

Comparison with data at unphysically heavy pion masses

[PRD 91 (2015) 054502]

- 48^{3} data points not included in the fit
- Besides other issues, error bars too large

Options for improvement

- Fill-in: calculate on every $20^{\text {th }}$ configuration
\rightarrow Issue with autocorrelation between configurations? decorrelated?
\rightarrow Requires to compute eigenvectors on more configurations (higher costs)
- More sources per configuration
\rightarrow Reuse expensive eigenvectors
\rightarrow How independent are the sources?
\rightarrow Will that improve the fitting difficulties?

More sources per configuration

- 162 sloppy and 6 exact solves per configuration
- $x, y, z=\{0,16,32\}$
- $\mathrm{t}=\{0,16,32,48,64,80\}$
- ONLY strange quark propagators generated yet

Looking at data

- When computing 2-point or 3-point correlation functions, we are always performing a spatial sum
\rightarrow Lüscher's sub-volumes may help
\rightarrow Our volume would likely be too small
- How independent are the different time planes?
- At which data should we look?

Looking at data

- When computing 2-point or 3-point correlation functions, we are always performing a spatial sum
\rightarrow Lüscher's sub-volumes may help
\rightarrow Our volume would likely be too small
- How independent are the different time planes?
- At which data should we look?
\rightarrow Depends on your problem of interest
\rightarrow Keep it simply: look at 2-point correlators

Looking at data

- When computing 2-point or 3-point correlation functions, we are always performing a spatial sum
\rightarrow Lüscher's sub-volumes may help
\rightarrow Our volume would likely be too small
- How independent are the different time planes?
- At which data should we look?
$\rightarrow B \rightarrow \pi \ell \nu$: bottom-light and light-light 2-point correlators
$\rightarrow M_{B}, f_{B}$: bottom-light 2-point correlators
\sim Worst signal to noise ratio in bottom-light correlators
\sim Slowest exponential decay in light-light correlators
\& Insufficient light quark propagators available $\frac{\text { s }}{}$

Looking at data

- When computing 2-point or 3-point correlation functions, we are always performing a spatial sum
\rightarrow Lüscher's sub-volumes may help
\rightarrow Our volume would likely be too small
- How independent are the different time planes?
- At which data should we look?
$\rightarrow B_{s} \rightarrow K \ell \nu$: bottom-strange and strange-strange 2-point correlators
$\rightarrow M_{B_{s}}, f_{B_{s}}$: bottom-strange 2-point correlators

Looking at data

- When computing 2-point or 3-point correlation functions, we are always performing a spatial sum
\rightarrow Lüscher's sub-volumes may help
\rightarrow Our volume would likely be too small
- How independent are the different time planes?
- At which data should we look?
$\rightarrow B_{s} \rightarrow K l_{\nu}:$ bottom-strange and strange-strange 2-point correlators
$\rightarrow M_{B_{s}}, f_{B_{s}}$: bottom-strange 2-point correlators
\sim bottom-strange 2-point correlators readily available

Bottom-strange 2-point function (ps-ps)

- Steep, monotonic
 exponential decay
- $\mathrm{T}=96$, anti-periodic BC

Bottom-strange 2-point function (ps-ps)

- Steep, monotonic

- T=96, anti-periodic BC
- Centered for $t=0$
\rightarrow Forward and backward propagation
- Signal has decayed by ~ 10 orders at first "crossing" with another time source

Bottom-strange 2-point function (ps-ps)

- Steep, monotonic
 exponential decay
- T=96, anti-periodic BC
- Folded at T/2
- Signal region $t_{\text {src }}+[13: 25]$

How correlated are the six different time planes?

- Compute AMA values for six time planes i.e. $6 \times(1 \oplus 27)$ sources: $N=40 ; r, s=\{0,16,32,48,64,80\}, t=0,1,2, \ldots, 48$
- Mean value

$$
\bar{y}_{r}(t)=\frac{1}{N} \sum_{n=1}^{N} y_{r}(t, n)
$$

- Variance-covariance matrix

$$
V_{r s}(t)=\frac{1}{N(N-1)} \sum_{n=1}^{N}\left(\bar{y}_{r}(t)-y_{r}(t, n)\right)\left(\bar{y}_{s}(t)-y_{s}(t, n)\right)
$$

- Correlation matrix (normalized values from $-1, \ldots, 1$)

$$
C_{r s}(t)=\frac{V_{r s}(t)}{\sqrt{V_{r r}(t)} \sqrt{V_{s s}(t)}}
$$

Correlations between time planes using $6 \times(1 \oplus 27)$

time slice 20

Correlations between the time planes

- $N=40, t=14$

Comparison for $M_{B_{s}}$

- Average time planes

$$
40 \times(6 \oplus 162)
$$

- Treat time planes as independent $(40 \times 6) \times(1 \oplus 27)$

- Central values agree (2015: $\left.E_{B}^{\text {eff }}\left(t, p^{2}=0\right)=3.1037(26), p=8 \%\right)$
- Treating time planes independently leads to $1 / 2$ of the statistical error and fit quality improves

Comparison for $\Phi_{B_{s}}$

- Average time planes

$$
40 \times(6 \oplus 162)
$$

- 2015: $\Phi_{s} / M_{B_{s}}^{3 / 2}=0.04704(90)$
- Central values differ by ~ 2 sigmas
- Statistical errors are similar; fit quality improved

$[40 \times(6 \oplus 162)]$ vs. $[(40 \times 6) \times(1 \oplus 27)]$

- Data points have similar size errors
- Correlated fit improved
- Why shift in central values???
- Data points have smaller errors
- Correlated fit looks better

Remarks

- Doubling the number of sources reduces statistical uncertainties!
- Different time planes appear to be relatively independent
- Treating time sources as independent, improves correlated fits
- Need to understand shift in decay amplitudes
- Next check correlations for strange-strange 2-point functions
- Try "replica analysis" based on UWerr (Γ function method)
- Bootstrap analysis may also be superior given the small sample size
- Will it carry over to pions? $(B \rightarrow \pi \ell \nu)$
\Rightarrow Generate more physical light quark propagators!

Resources and Acknowledgments

USQCD: Ds, Bc, and pi0 cluster (Fermilab), qcd12s cluster (Jlab)
RBC qcdcl (RIKEN) and cuth (Columbia U)
UK: ARCHER (EPCC) and DiRAC (UKQCD)

