Heavy Quarks in the RBC/UKQCD lattice phenomenology programme

Oliver Witzel Higgs Centre for Theoretical Physics

January 29, 2015

HQET 000000 domain-wall

outlook

Overview

▶ Static Heavy Quarks

▶ Relativistic Heavy Quarks

▶ Domain-Wall Heavy Quarks

00000

Motivation: Constraining the Standard Model

- Determination of CKM matrix elements V_{ub} and V_{cb}
- ▶ B-physics provides constraints on the apex of the CKM unitarity triangle
 ▶ B⁰-B⁰ mixing
 - ▶ V_{ub} and V_{cb} e.g. from $B \to \pi \ell \nu$ and $\overline{B} \to D^* \ell \nu$ form factors

Experimental results and nonperturbative inputs are needed

http://ckmfitter.in2p3.fr, http://utfit.roma1.infn.it, http://www.latticeaverages.org

- ► Domain-wall fermions for the light quarks (u, d, s) [Kaplan 1992], [Shamir 1993]
- Iwasaki gauge action [Iwasaki 1983]
- ▶ New ensembles with physical pions and Möbius DWF [Brower et al.2004][Brower et al. 2012]

L	<i>a</i> (fm)	m_l	m_h	M_{π}	
24	pprox 0.11	0.005,0.010	0.040	$\stackrel{>}{_\sim}$ 330 MeV $\stackrel{>}{_\sim}$ 290 MeV	[Allton et al. 2008]
32	pprox 0.08	0.004,0.006,0.008	0.030		[Y. Aoki et al. 2011]
48	pprox 0.11 $pprox$ 0.08	0.00078	0.0362	139 MeV	[Blum et al. 2014]
64		0.000678	0.02661	139 MeV	[Blum et al. 2014]

Finer ensemble with $a^{-1} \approx 2.8$ GeV and $M_{\pi} \approx 200$ MeV in progress

domain-wall

Domain-wall fermions

- Good chiral properties
- \blacktriangleright Residual chrial symmetry breaking parameterized and controlled by $m_{\rm res}$
- Strictly unitary: same action for the valence and the sea sector
- Continuum-like χ PT expressions

Algorithmic progress:

- ▶ Möbius domain-wall fermion allow to reduce L_s by fixed m_{res} [Brower et al.2004][Brower et al. 2012]
- ▶ HDCG significantly reduces costs in the valence sector [Boyle 2014]
- ▶ Why use DWF for heavy quarks?
 - Include charm sea-quarks
 - ▶ Simplified renormalization and improved discretization errors

Challenges for *D*- and *B*-physics on the lattice

- ▶ The mass of the *b*-quark introduces another scale
 - ▶ Light quark masses: $m_u = 2.3$ MeV, $m_d = 4.8$ MeV, $m_s = 95$ MeV
 - Mass of the *c*-quark: $m_c = 1.28 \text{ GeV}$
 - Mass of the *b*-quark: $m_b = 4.18 \text{ GeV}$
- ► Today's lattices have an inverse lattice spacing of a⁻¹ ≈ 1.7 ... 3 GeV
 ► am_c ≤ 1 but am_b > 1
 - ▶ Direct simulations of *c*-quarks become feasible
 - b-quarks require extrapolation or an effective action (e.g. HQET (static), NRQCD, Fermilab or RHQ action)

HQET 000000 domain-wall

outlook

RBC-UKQCD's Heavy Quark Projects

	HQET (static)	relativistic (RHQ)	domain-wall	
action	Eichten-Hill with link smearing	anisotropic Wilson-clover	Möbius DWF	
heavy quarks	infinitely heavy, correction $1/m_H$	NP tuned using M_{B_s} , i.e. physical m_b	simulate near m_c , extrapolate to m_b	
matching	perturbative NP in progress	mostly nonperturbative	nonperturbative	
physics	f_B , f_{B_s} , $B^0 - \overline{B^0}$	$f_B, f_{B_s}, g_{B^*B\pi}, B^0 - \overline{B^0}$ $B \to \pi \ell \nu, B_s \to K \ell \nu$ rare <i>B</i> -decays	$egin{array}{l} f_{D_s}, \ f_{D_s}, \ D^0 - \overline{D^0} \ f_B, \ f_{B_s}, \ B^0 - \overline{B^0} \ decays \end{array}$	
references	PRD82(2010)01405 arXiv:1406.6192	PRD86 (2012) 116003 PoS(Lattice2013)408 arXiv:1404.4670 arXiv:1501.05373	arXiv:1412.6206 arXiv:1501.00660 PoS(Lattice2014)380	

Static Heavy Quarks

overview	HQET	RHQ	domain-wall
000000	00000	000000000000	00000

HQET (static) [Y. Aoki et al. 2014]

(Tomomi Ishikawa, Yasumichi Aoki)

- Effective action for *b*-quarks in the limit $m_b \to \infty$ [Eichten and Hill 1990] i.e. neglect corrections of $\mathcal{O}(1/m_b)$
- ▶ Static quark propagator is given by a product of gauge links
- Improve poor signal-to-noise ratio applying link smearing [Della Morte et al. 2005] HYP1: (0.75,0.6,0.3) [Hasenfratz and Knechtli 2001] HYP2: (1.0,1.0,0.5) [Della Morte et al. 2005]
- \blacktriangleright Two-step matching: lattice HQET \rightarrow continuum HQET \rightarrow continuum QCD
- Matching factors perturbatively computed at 1-loop
- Gaussian smeared sources/sinks
- Physics program
 - Decay constants: f_B , f_{B_s} , f_{B_s}/f_B
 - ► $B^0 \overline{B^0}$ mixing: ξ , $f_B \sqrt{\hat{\mathcal{B}}_B}$, $f_{B_s} \sqrt{\hat{\mathcal{B}}_{B_s}}$

Statistical errors only

Statistical errors only

- Reduce statistical errors using AMA [Blum et al. 2012]
- \blacktriangleright Reduce chiral extrapolation error with new ensembles with $M_{\pi}=139$ MeV
- ▶ Reduce renormalization error with a nonperturbative method (Piotr Korcyl)
- Account for $1/m_b$ corrections

overview	HQET	RHQ	domain-wall	outlook
000000	00000	000000000000	00000	

Comparison with other results

Relativistic Heavy Quarks

Relativistic Heavy Quark (RHQ) action [Christ, Li, and Lin 2007]

- Builds upon Fermilab approach [El-Khadra et al. 1997]
- ▶ Close relation to Tsukuba formulation [S. Aoki et al. 2003]
- Treat heavy quark mass to all orders in $(m_b a)^n$
- ▶ Expand in powers of the spatial momentum through $O(\vec{p}a)$ with resulting errors of $O(\vec{p}^2a^2)$
- ▶ Similar size discretization errors in heavy-light quantities as in light-light
- Well defined continuum limit
- ▶ Requires (perturbative) mixed-action renormalization factors
 - 1-loop results (Christoph Lehner)
- ► Tune 3 parameters of the anisotropic clover action nonperturbatively using the B_s system [PRD86 (2012) 116003]
- ▶ Validate by computing $b\bar{b}$ masses and splittings

verview	HQET	RHQ
00000	000000	0000000

domain-wall

Coupling constant $g_{B^*B\pi}$ [PoS(Lattice2013)408] (Ben Samways, Jonathan Flynn)

- Strong coupling $g_{B^*B\pi}$ parameterizes $\langle B\pi|B^*\rangle$
- ▶ Related to leading order LEC $g_b = g_{B^*B\pi} \cdot f_\pi/(2M_B)$ of HM χ PT
- g_b important for chiral extrapolations of f_B , B_B , ξ , $f_+^{B\pi}$, $f_0^{B\pi}$, ...
- ▶ First determination at physical *b*-quark mass

▶ Not accessible experimentally

► Use point-source light quark and generate Gaussian smeared-source heavy quark

• Compute on the lattice
$$\Phi_{B_q}$$

 $f_B = \Phi_{B_q}^{\rm ren} \cdot a_{32}^{-3/2} / \sqrt{M_{B_q}}$

▶ Improve axial current at 1-loop (O(α_Sa), perturbatively computed coefficient)
 ▶ Use mostly-nonperturbative renormalization [EI-Khadra et al. 2001]

$$Z_V^{bl} = \varrho^{bl} \cdot \sqrt{Z_V^{bb} Z_V^{ll}}$$

- ► Coefficients computed at 1-loop results (Christoph Lehner)
- ► Compute dimensionless ratios over $M_{B_s}^{3/2}$ to avoid explicit *a*-dependence

Chiral-continuum extrapolation of f_B and f_{B_s}/f_B [arXiv:1404.4670]

- ▶ NLO SU(2) HM χ PT to data with unitary M_{π}
- \blacktriangleright Only data points with filled symbols included in the fit ($M_\pi \lesssim 425$ MeV)

▶ $g_{B^*B\pi} = 0.57(8)$ [PoS(Lattice2013)408] ▶ $f_{\pi} = 130.4$ MeV PDG ▶ $\Lambda_{\chi} = 1$ GeV

Statistical errors only

Continuum extrapolation of f_{B_s} [arXiv:1404.4670]

 domain-wall

outlook

Exclusive semileptonic decays: example $B \rightarrow \pi \ell \nu_{[arXiv:1501.05373]}$ (Taichi Kawanai)

$$q^2 = M_B^2 + M_\pi^2 - 2M_B E_\pi$$

Conventionally parameterized by

$$\frac{d\Gamma(B \to \pi \ell \nu)}{dq^2} = \frac{G_F^2}{192\pi^3 M_B^3} \left[\left(M_B^2 + M_\pi^2 - q^2 \right)^2 - 4M_B^2 M_\pi^2 \right]^{3/2} \times \left| f_+(q^2) \right|^2 \times \left| V_{ub} \right|^2$$
experiment known nonperturbative input CKM

Allows determination of CKM matrix element $|V_{ub}|$

[arXiv:1501.05373]

• Extract f_{\parallel} and f_{\perp} for three different q^2 values

- Convert results to f_+ and f_0
- Estimate all systematic errors and add in quadrature

HQET 000000 domain-wall

outlook

Graphical error budgets [arXiv:1501.05373]

HQET 000000 RHQ 0000000000000000 domain-wall

$B_s ightarrow K \ell u$ [arXiv:1501.05373]

- ► Calculation analogous to $B \rightarrow \pi \ell \nu$, but smaller uncertainties
- ► Lattice simulations agree for simulated data, differ by less than 2σ for extrapolated $q^2 = 0$

▶ Given an experimental measurement of branching fractions at $q^2 \gtrsim 13$ GeV one may distinguish between curves corresponding to $|V_{ub}|_{\text{excl.}}$ and $|V_{ub}|_{\text{incl.}}$

HQET 000000 RHQ 000000000000000 domain-wall

outlook

Work in progress

overview

- Improve chiral-continuum extrapolation by adding new ensembles with physical pions / finer lattice spacing
- ▶ Reduce statistical errors using AMA [Blum eta al. 2012]

▶ $B^0 - \overline{B^0}$ mixing

► Rare *B*-decays (Edwin Lizarazo)

Domain-Wall Heavy Quarks

domain-wall

outlook

Heavy domain-wall fermions (Tobias Tsang, Andreas Jüttner)

[Jüttner et al. 2015]

- Exploration of Möbius DWF parameters: am_q , M_5 , and L_s
 - ▶ Quenched study on small lattices with $a^{-1} = 2 \dots 5.6$ GeV and $L \approx 1.6$ fm
 - ▶ Monitoring " η_s ," " D_s ," and " η_c ," quantities

Charm physics on dynamical 2+1 flavor DWF ensembles (Andreas Jüttner)

- ▶ Simulate several "c"-quarks per ensemble and then interpolate
- Möbius DWF: $am_q \le 0.45$, $M_5 = 1.6$, $L_s = 12$
- ▶ Use Z_2 noise sources on every 2nd time plane and one-end-trick

 First interpolate each ensemble to common reference masses "η_c" (η_c = 2.3, 2.5, 2.6, 2.76 GeV)

 Next interpolate each "η_c" reference mass to the physical pion mass at fixed lattice spacing

Charm physics on dynamical 2+1 flavor DWF ensembles

Ensemble with third, finer lattice spacing will significantly improve control of continuum extrapolation

From charm to bottom (Ava Khamseh, Peter Boyle, Andreas Jüttner, OW)

- ▶ Charm and heavier than charm-quarks can be simulated using DWF
- Simulations of domain-wall bottom-quarks are not (yet) feasible
- Options
 - ► Extrapolate from the charm region to the *b*-quark mass à la ETMC's ratio method [Blossier et al. 2010]
 - Interpolate from charm region to the static limit
 - Interpolate ratios between charm region and static limit

▶ Work in progress

- ▶ Improve on statistical uncertainties by using HDCG [Boyle 2014]
- Carry out nonperturbative renormalization

HQET 000000 domain-wall

outlook

Outlook

- Short range: RHQ action provides fastest access to important B-physics quantities like semi-leptonic form factors
 - ▶ First results are posted to the arXiv
 - Improvements on existing and study of other quantities is under way
- ▶ Long range: heavy DWF look promising to achieve very precise results
 - ▶ Parameters for "good" DWF *c*-quarks explored; runs in progress
 - Extrapolation to *b*-quarks is studied
 - Possible comeback of the static action: turn extrapolation into an interpolation!
- Production of next generation 2+1+1 DWF ensembles has started!
 Dynamical charm quarks; finer lattice spacing; huge volumes

Appendix

Error budget [arXiv:1404.4670]

	$f_{B^0}(\%)$	$f_{B^+}(\%)$	$f_{B_s}(\%)$	$f_{B_s}/f_{B^0}(\%)$	$f_{B_s}/f_{B^+}(\%)$
statistics	3.1	3.3	2.2	1.1	1.1
chiral-continuum extrapolation	4.4	5.9	3.1	3.9	5.5
lattice-scale uncertainty	1.5	1.5	1.5	0.1	0.1
<i>I</i> - and <i>s</i> -quark mass uncert.	0.1	0.1	0.9	0.8	0.9
RHQ parameter tuning	1.2	1.2	1.2	0.1	0.1
HQ discretization errors	1.7	1.7	1.7	0.3	0.3
LQ and gluon discr. errors	1.1	1.1	1.2	0.6	0.6
renormalization factor	1.7	1.7	1.7	0.0	0.0
finite volume	0.4	0.5	0.0	0.5	0.5
isospin-breaking and EM	0.7	0.7	0.7	0.1	0.7
total	6.3	7.6	5.2	4.2	5.8

$B \to \pi \ell \nu$: relating form factors f_+ and f_0 to f_{\parallel} and f_{\perp}

▶ Parametrize the hadronic matrix element for the flavor changing vector current V^µ in terms of the form factors f₊(q²) and f₀(q²)

$$\langle \pi | V^{\mu} | B
angle = {\it f_+(q^2)} \left(p^{\mu}_B + p^{\mu}_\pi - rac{M^2_B - M^2_\pi}{q^2} q^{\mu}
ight) + {\it f_0} rac{M^2_B - M^2_\pi}{q^2} q^{\mu}$$

▶ Using the *B*-meson rest frame we compute on the lattice

 $f_{\parallel}(E_{\pi}) = \langle \pi | V^0 | B
angle / \sqrt{2M_B}$ and $f_{\perp}(E_{\pi}) p_{\pi}^i = \langle \pi | V^i | B
angle / \sqrt{2M_B}$

Both are related by

$$\begin{split} f_0(q^2) &= \frac{\sqrt{2M_B}}{M_B^2 - M_\pi^2} \left[(M_B - E_\pi) f_{\parallel}(E_\pi) + (E_\pi^2 - M_\pi^2) f_{\perp}(E_\pi) \right] \\ f_+(q^2) &= \frac{1}{\sqrt{2M_B}} \left[f_{\parallel}(E_\pi) + (M_B - E_\pi) f_{\perp}(E_\pi) \right] \end{split}$$