Introduction 0000 Tuning 0000

Actions

LPT 0000 Results *bb* 

B-physics

Conclusion

# *B*-meson physics with dynamical domain-wall light quarks and nonperturbatively tuned relativisitc *b*-quarks

#### Oliver Witzel for the RBC and UKQCD collaborations

Boston University, Center for Computational Science

Trento, April 5, 2012

| Introduction | Actions | Tuning  | LPT  | Results bb | B-physics | Conclusion |
|--------------|---------|---------|------|------------|-----------|------------|
| 0000         | 00      | 0000000 | 0000 | 0000000    | 0000000   |            |
|              |         |         |      |            |           |            |

- Introduction
- Actions

Outline

- Nonperturbative tuning
- Lattice perturbation theory
- Results for bottomonium
- B-physics
- Conclusions



### Phenomenological Importance

- $B \overline{B}$ -mixing allows us to determine CKM matrix elements
- Dominant contribution in SM: box diagram with top quarks

$$|V_{td}^*V_{tb}| \text{ for } B_d - \text{mixing} \\ |V_{ts}^*V_{tb}| \text{ for } B_s - \text{mixing} \\ |V_{ts}^*V_{tb}| \text{ for } B_s - \text{mixing} \\ \end{pmatrix} \Delta m_q = \frac{G_F^2 m_W^2}{6\pi^2} \eta_B S_0 m_{B_q} f_{B_q}^2 B_{B_q} |V_{tq}^*V_{tb}|^2 \\ \hline t \\ \text{Non-perturbative contribution: } f_q^2 B_{B_q} \\ \text{Define the } SU(3) \text{ breaking ratio} \\ \xi^2 = f_{B_s}^2 B_{B_s} / f_{B_d}^2 B_{B_d} \\ \text{CKM matrix elements are extracted by} \\ \frac{\Delta m_s}{\Delta m_d} = \frac{m_{B_s}}{m_{B_d}} \xi^2 \frac{|V_{ts}|^2}{|V_{td}|^2} \\ \end{bmatrix} B^0 \underbrace{\frac{1}{6\pi^2} \eta_B S_0 m_{B_q} f_B^2 B_{B_q}}_{q \text{ tbox}} B^0 \underbrace{\frac{1}{6\pi^2} \eta_B S_0 m_{B_q} f_{B_q}^2 B_{B_q}}_{q \text{ tbox}} B^0 \underbrace{\frac{1}{6\pi^2} \eta_B S_0 m_{B_q} f_B^2 B_{B_q}}_{q \text{ tbox}} B^0 \underbrace{\frac{1}{6\pi^2} \eta_B S_0 m_{B_q} f_B^2 B_{B_q}}_{q \text{ tbox}} B^0 \underbrace{\frac{1}{6\pi^2} \eta_B S_0 m_{B_q} f_B^2 B_{B_q}}_{q \text{ tbox}} B^0 \underbrace{\frac{1}{6\pi^2} \eta_B S_0 m_{B_q} f_B^2 B_{B_q}}_{q \text{ tbox}} B^0 \underbrace{\frac{1}{6\pi^2} \eta_B S_0 m_{B_q} f_B^2 B_{B_q}}_{q \text{ tbox}} B^0 \underbrace{\frac{1}{6\pi^2} \eta_B S_0 m_{B_q} f_B^2 B_{B_q}}_{q \text{ tbox}} B^0 \underbrace{\frac{1}{6\pi^2} \eta_B S_0 m_{B_q} f_B^2 B_{B_q}}_{q \text{ tbox}} B^0 \underbrace{\frac{1}{6\pi^2} \eta_B S_0 m_{B_q} f_B^2 B_{B_q}}_{q \text{ tbox}} B^0 \underbrace{\frac{1}{6\pi^2} \eta_B S_0 m_{B_q} f_B^2 H_B^2 H_$$

 Experimental error of Δm<sub>q</sub> is better than a percent; lattice uncertainty for ξ is about 3%

| Introduction | Actions | Tuning  | LPT  | Results bb |
|--------------|---------|---------|------|------------|
| 0000         | 00      | 0000000 | 0000 | 0000000    |

B-physics

Conclusion

### Constraining the CKM Unitarity Triangle

- ► The apex of the unitarity triangle is constrained by the ratio of B<sub>s</sub> to B<sub>d</sub> oscillation frequencies (Δm<sub>q</sub>)
- ► Δm<sub>q</sub> is experimentally measured to better than a percent [BABAR, Belle, CDF]
- Dominant error comes from the uncertainty on the lattice QCD calculation of the ratio ξ (~ 3%)
- A precise determination is needed to help constrain physics beyond the Standard Model





## Unitarity Fit without Semileptonic Decays [Lunghi and Soni 2009]

- Avoids 2-3 σ tension between inclusive and exclusive determinations of both V<sub>ub</sub> and V<sub>cb</sub>
- Requires precise determination of  $f_B$  (and also of  $BR(B \rightarrow \tau \nu)$ and  $\Delta M_s$ )



## Possible Deviations from the SM [Lunghi and Soni 2010/11]

- Experimental value for  $sin(2\beta)$  is 3.3 $\sigma$  lower than SM expectation
- ▶ Measured value for  $\mathsf{BR}(B o \pi l \nu)$  is 2.8 $\sigma$  lower than predicted
- ▶ Most likely source of deviation in  $B_{d(s)}$  mixing and sin(2 $\beta$ );less likely in  $B \rightarrow \tau \nu$

# Latest Results (End of 2011) [http://www.latticeaverages.org]

▶ New physics in  $B \rightarrow \tau \nu$  decay prefered less so in in *B*-mixing

See also: http://ckmfitter.in2p3.fr, http://utfit.roma1.infn.it





- HPQCD and FNAL-MILC result both based on the asqtad-improved staggered ensembles generated by MILC
- RBC/UKQCD result only exploratory study computed on 16<sup>3</sup> lattices and using static approximation for the *b*-quarks
- This project aims for an independent cross-check at high precision using domain-wall light-quarks and relativistic heavy quarks



### 2+1 Flavor Domain-Wall Gauge Field Configurations

▶ Domain-wall fermions for the light quarks (u, d, s) [Kaplan 1992, Shamir 1993]

▶ Iwasaki gauge action [Iwasaki 1983]



| L  | <i>a</i> (fm) | m <sub>l</sub> | m <sub>s</sub> | $m_{\pi}({\sf MeV})$ | approx. $\#$ configs. | # time<br>sources |
|----|---------------|----------------|----------------|----------------------|-----------------------|-------------------|
| 24 | pprox 0.11    | 0.005          | 0.040          | 331                  | 1636                  | 1                 |
| 24 | pprox 0.11    | 0.010          | 0.040          | 419                  | 1419                  | 1                 |
| 32 | pprox 0.08    | 0.004          | 0.030          | 307                  | 628                   | 2                 |
| 32 | pprox 0.08    | 0.006          | 0.030          | 366                  | 889                   | 2                 |
| 32 | pprox 0.08    | 0.008          | 0.030          | 418                  | 544                   | 2                 |

[C. Allton et al. 2008, Y. Aoki et al. 2010]



### Relativistic Heavy Quark Action for the *b*-Quarks

- Relativistic Heavy Quark action developed by Christ, Li, and Lin for the *b*-quarks in 2-point and 3-point correlation functions [Christ, Li, Lin 2007; Lin and Christ 2007]
- Builds upon Fermilab approach [El Khadra, Kronfeld, Mackenzie 1997] by tuning all parameters of the clover action non-perturbatively; close relation to the Tsukuba formulation [Aoki, Kuramashi, Tominaga 2003]
- Heavy quark mass is treated to all orders in  $(m_b a)^n$
- Expand in powers of the spatial momentum through  $O(\vec{p}a)$ 
  - Resulting errors will be of  $O(\vec{p}^2 a^2)$
  - Allows computation of heavy-light quantities with discretization errors of the same size as in light-light quantities
- Applies for all values of the quark mass
- Has a smooth continuum limit

| Introduction | Actions | Tuning   | LPT  | Results bb | B-physics | Conclusion |
|--------------|---------|----------|------|------------|-----------|------------|
| 0000         | 00      | •0000000 | 0000 | 0000000    | 0000000   |            |

Tuning the Parameters for the RHQ Action

$$S = \sum_{n,n'} \bar{\Psi}_n \left\{ m_0 + \gamma_0 D_0 - \frac{aD_0^2}{2} + \zeta \left[ \vec{\gamma} \cdot \vec{D} - \frac{a\left(\vec{D}\right)^2}{2} \right] - a \sum_{\mu\nu} \frac{ic_P}{4} \sigma_{\mu\nu} F_{\mu\nu} \right\}_{n,n'} \Psi_{n'}$$



| Introduction | Actions | Tuning  | LPT  | Results bb | B-physics | Conclusion |
|--------------|---------|---------|------|------------|-----------|------------|
| 0000         | 00      | 0000000 | 0000 | 0000000    | 0000000   |            |

► Compute for all seven parameter sets

spin-averaged mass $\overline{M} =$ hyperfine-splitting $\Delta_M$ ratio $\frac{M_1}{M_2} =$ 

Assuming linearity

$$Y_{r} = \begin{bmatrix} \overline{M} \\ \Delta_{M} \\ \frac{M_{1}}{M_{2}} \end{bmatrix}_{r} = J^{(3\times3)} \begin{bmatrix} m_{0}a \\ c_{P} \\ \zeta \end{bmatrix}_{r} + A^{(3\times1)} \qquad (r = 1, \dots, 7)$$

and defining

$$J = \begin{bmatrix} \frac{Y_3 - Y_2}{2\sigma_{m_0 a}}, \frac{Y_5 - Y_4}{2\sigma_{c_P}}, \frac{Y_7 - Y_6}{2\sigma_{\zeta}} \end{bmatrix} \qquad A = \begin{bmatrix} \overline{M} \\ \Delta_M \\ \frac{M_1}{M_2} \end{bmatrix}_1 - J \times \begin{bmatrix} m_0 a \\ c_P \\ \zeta \end{bmatrix}_1$$

▶ We extract the RHQ parameters and iterate until result is inside uncertainties

$$\begin{bmatrix} m_0 a \\ c_P \\ \zeta \end{bmatrix}^{\mathsf{RHQ}} = J^{-1} \times \left( \begin{bmatrix} \overline{M} \\ \Delta_M \\ \frac{M_1}{M_2} \end{bmatrix}^{\mathsf{PDG}} - A \right)$$

| Introduction | Actions | Tuning  | LPT  | Results bb | B-physics | Conclusion |
|--------------|---------|---------|------|------------|-----------|------------|
| 0000         | 00      | 0000000 | 0000 | 0000000    | 0000000   |            |

### Improvement of Tuning

- ▶ Tuning method pioneered on 24<sup>3</sup> (a  $\approx$  0.11fm) by Min Li [M. Li 2009] Further studies by Hao Peng on 32<sup>3</sup> (a  $\approx$  0.08fm) [H. Peng 2010] Exploratory studies; results not suitable for production
- Improvements and new setup
  - Use of point-source strange quark operators and Gaussian-smeared heavy quarks
  - Performed optimization study of smearing parameters
  - Significantly increased statistics
  - Only use of heavy-light quantities
  - Check on linearity assumption

| Introduction | Actions | Tuning  | LPT  | Results bb | B-physics |
|--------------|---------|---------|------|------------|-----------|
| 0000         | 00      | 0000000 | 0000 | 0000000    | 0000000   |

### Improving the Signal by Smearing of Source



Reduction of excited state contamination

▶ 818 measurements,  $m_{\mathsf{sea}}^l = m_{\mathsf{val}}^l = 0.005$ ,  $m_0 a = 7.38$ ,  $c_P = 3.89$ ,  $\zeta = 4.19$ 

| Introduction | Actions | Tuning   | LPT  | Results bb | B-physics |
|--------------|---------|----------|------|------------|-----------|
| 0000         | 00      | 00000000 | 0000 | 0000000    | 0000000   |

### Effective Masses for Pseudoscalar and Vector State





- ▶ Compute effective masses for momenta  $p^2 = 0, 1, 2, 3$
- Obtain  $\frac{M_1}{M_2}$  from fit to dispersion relation

$$E_p^2 = rac{M_1}{M_2} \, p^2 / (2\pi L)^2 + E_0^2$$





Tuning 00000000 I PT

Results bb

**B**-physics

Conclusion

# Test of Linearity

- Run simulation with 19 different RHQ parameter sets
- 1 center point and use variations roughly 1.5 $\sigma$ , 3 $\sigma$  and 4.5 $\sigma$ (based on initial iteration)
- Consistent result





| Introduction | Actions | Tuning  | LPT  | Results bb | B-physics | Conclusion |
|--------------|---------|---------|------|------------|-----------|------------|
| 0000         | 00      | 0000000 | 0000 | 0000000    | 0000000   |            |

## Preliminary Parameters of the RHQ Action

## Non-perturbatively tuned

| m <sup>l</sup> <sub>sea</sub> | m <sub>0</sub> a | CP     | ζ       | $m_{sea}^{l}$ | m <sub>0</sub> a | CP      | ζ       |
|-------------------------------|------------------|--------|---------|---------------|------------------|---------|---------|
| 0.005                         | 8.43(7)          | 5.7(2) | 3.11(9) | 0.004         | 4.07(6)          | 3.7(1)  | 1.86(8) |
| 0.010                         | 8.47(9)          | 5.8(2) | 3.1(2)  | 0.006         | 3.97(5)          | 3.5(1)  | 1.94(6) |
| average                       | 8.45(6)          | 5.8(1) | 3.10(7) | 0.008         | 3.95(6)          | 3.6(1)  | 1.99(8) |
|                               | ( )              | ( )    |         | average       | 3.99(3)          | 3.57(7) | 1.93(4) |

Results bb Introduction Actions Tuning LPT B-physics •000

Conclusion

## RHQ Lattice Perturbation Theory I [C. Lehner]

Motivation ▶ Knowing the RHQ parameters nonperturbatively we can compare the outcome with lattice perturbation theory

> Helps to build confidence that lattice perturbation theory is working also in cases where we do not have fully non-perturbative matching (e.g. decay constants, form factors)

#### Method

- Computation at 1-loop order
- Mean field improved
- ▶ Use nonperturbative inputs for  $\langle P \rangle$ ,  $\langle R \rangle$ ,  $\langle L \rangle$  and  $m_0 a$
- ▶ Predict: *c<sub>P</sub>* and *ζ*
- ▶ Naive  $\alpha_{s}^{2} \sim 5\%$  power-counting estimate

| oduction | Actions | Tuning   | LPT |
|----------|---------|----------|-----|
| 00       | 00      | 00000000 | 000 |

Results *bb* 0000000 B-physics

Conclusion

# RHQ Lattice Perturbation Theory II [C. Lehner]

- *cP* ► Match lattice quark-gluon vertex to the continuum counterpart in the on-shell limit
  - $\blacktriangleright$  At intermediate steps infrared divergences are regulated with a nonzero gluon mass  $\lambda$
  - $\blacktriangleright$  Final results are obtained in the limit  $\lambda \rightarrow 0$
  - Extract the lattice heavy-quark dispersion relation from momentum dependence of the pole in the heavy-quark propagator at 1-loop
    - Require that this dispersion relation agrees with the continuum

#### Mean Field Improvement – two methods:

- Use  $u_0 = \langle P \rangle^{1/4}$  to resum tadpole contributions
- $\blacktriangleright$  Estimate  $u_0$  from spatial link field in Landau gauge  $\langle L 
  angle$
- ► The maximum of the spread between both values and a naive α<sup>2</sup><sub>s</sub> estimate is used to estimate the systematic error



- ▶ Central values: average of one-loop mean-field improved values computed with  $u_0$  obtained from the plaquette and from the spatial Landau link
- ▶ Error on perturbative *c*<sub>P</sub>: difference between mean field methods dominates
- Frror on perturbative  $\zeta$ : naive power-counting dominates
- Nonperturbative values statistical errors only
- Agreement within in  $2\sigma$  MF improved LPT is working!

| Introduction | Actions | Tuning   | LPT  | Results bb | B-physics | Conclusion |
|--------------|---------|----------|------|------------|-----------|------------|
| 0000         | 00      | 00000000 | 0000 | 0000000    | 0000000   |            |

## Preliminary Parameters of the RHQ Action

## Non-perturbatively tuned

| m <sup>l</sup> <sub>sea</sub> | m <sub>0</sub> a | CP     | $\zeta$ | $m_{sea}^{l}$ | m <sub>0</sub> a | CP      | $\zeta$ |
|-------------------------------|------------------|--------|---------|---------------|------------------|---------|---------|
| 0.005                         | 8.43(7)          | 5.7(2) | 3.11(9) | 0.004         | 4.07(6)          | 3.7(1)  | 1.86(8) |
| 0.010                         | 8.47(9)          | 5.8(2) | 3.1(2)  | 0.006         | 3.97(5)          | 3.5(1)  | 1.94(6) |
| average                       | 8.45(6)          | 5.8(1) | 3.10(7) | 0.008         | 3.95(6)          | 3.6(1)  | 1.99(8) |
| 0                             | ( )              | ( )    |         | average       | 3.99(3)          | 3.57(7) | 1.93(4) |

## Results RHQ Lattice Perturbation Theory [C. Lehner]

| a in fm | $\langle P \rangle$ | $\langle R \rangle$ | $\langle L \rangle$ | <i>m</i> 0 <i>a</i> | CP     | ζ      |
|---------|---------------------|---------------------|---------------------|---------------------|--------|--------|
| 0.11    | 0.58803             | 0.34350             | 0.8439              | 8.45                | 4.8(6) | 3.2(2) |
| 0.086   | 0.61558             | 0.37984             | 0.8609              | 3.99                | 3.0(3) | 2.1(1) |

| Introduction | Actions | Tuning  | LPT  | Results bb | B |
|--------------|---------|---------|------|------------|---|
| 0000         | 00      | 0000000 | 0000 | ●000000    | 0 |

B-physics

Conclusion

### Predictions from seven RHQ parameter sets

- $\blacktriangleright$  Compute quantity Q on all seven RHQ parameter sets
- Build-up prediction matrix  $J_p$  and vector  $A_p$

$$J_{p} = \begin{bmatrix} \frac{Q_{3} - Q_{2}}{2\sigma_{m_{0}a}}, \frac{Q_{5} - Q_{4}}{2\sigma_{c_{p}}}, \frac{Q_{7} - Q_{6}}{2\sigma_{\zeta}} \end{bmatrix} \qquad \qquad A_{p} = Q_{1} - J_{p} \times \begin{bmatrix} m_{0}a \\ c_{p} \\ \zeta \end{bmatrix}_{1}$$

 $\blacktriangleright$  By linearity we can predict Q for the tuned parameter set

$$Q^{\rm RHQ} = J_{\rho}^{(1\times3)} \times \begin{bmatrix} m_0 a \\ c_{\rho} \\ \zeta \end{bmatrix}^{\rm RHQ} + A_{\rho}$$

► Statistical errors in predicted value also reflect statistical uncertainty in the tuned RHQ parameters and account for statistical correlations between the three RHQ parameters

| Introduction | Actions | Tuning  | LPT  | Results bb | B-physics |
|--------------|---------|---------|------|------------|-----------|
| 0000         | 00      | 0000000 | 0000 | 000000     | 00000000  |

## Computing Heavy-Heavy States



- ▶ For a good signal need different source smearing
- ▶ Higher sensitivity to non-linearity effects

| Introduction | Actions | Tuning   | LPT  | Results bb | B-physics |
|--------------|---------|----------|------|------------|-----------|
| 0000         | 00      | 00000000 | 0000 | 000000     | 00000000  |

### Source Smearing for Heavy-Heavy States e.g. $\Upsilon$



▶ 818 measurements,  $m_{\text{sea}}^{\prime} = 0.005$ ,  $m_0 a = 8.40$ ,  $c_P = 5.80$ ,  $\zeta = 3.20$ 



#### Effective Mass Plots for $\eta_b$ , $\Upsilon$ and $\chi_{b1}$



▶ 818 measurements,  $m_{sea}^{l} = 0.005$ ,  $m_{0}a = 8.40$ ,  $c_{P} = 5.80$ ,  $\zeta = 3.20$ 





## Preliminary Predictions for the Heavy-Heavy States

- ▶ RHQ action describes heavy-light as well as heavy-heavy mesons
- ▶ Tuning the parameters in the *B<sub>s</sub>* system we can predict bottomonium states and mass splittings





▶ Publication on tuning and bottomonium spectroscopy is in preparation





- Location of four-quark operator is fixed
- ► Location of *B*-mesons is varied over all possible time slices
- Need: one point-source light quark and one point-source heavy quark originating from operator location
- Propagators can be used for B- and  $\overline{B}$ -meson
- Project out zero-momentum component using a Gaussian sink



B-physics

Conclusion

## Mostly Nonperturbative Renormalization

For  $f_{B_d}$ ,  $f_{B_s}$  and  $B \to \pi$  we plan to compute mostly non-perturbative renormalization factors á la [El Khadra et al. 2001]

$$\varrho^{bl} = \frac{Z_V^{bl}}{\sqrt{Z_V^{bb} Z_V^{ll}}}$$

- $\blacktriangleright$  Compute  $Z_V^{\prime\prime}$  and  $Z_V^{bb}$  non-perturbatively and only  $\varrho^{b\prime}$  perturbatively
- ► Enhanced convergence of perturbative serious of *ρ<sup>bl</sup>* w.r.t. *Z<sup>bl</sup><sub>V</sub>* because tadpole diagrams cancel in the ratio
- $\blacktriangleright$  Bulk of the renormalization is due to flavor conserving factor  $\sqrt{Z_V'' Z_V^{bb}} \sim 3$
- $\rho^{bl}$  is expected to be of  $\mathcal{O}(1)$ ; receiving only small corrections
- ► For domain-wall fermions  $Z_A = Z_V + O(m_{res})$  i.e. we know  $Z_V''$ [Y. Aoki et al. 2011]
- ▶ Mostly nonperturbative renormalization not yet computed for  $B-\bar{B}$  mixing



Tuning

Actions

Introduction

- Re-use: point-source light quark and generate Gaussian smeared-source heavy quark
- Final result will use mostly nonperturbative renormalization



B-physics

0000000

Conclusion



Results hh

 ▶ Renormalization to be improved: nonperturbative Z<sup>II</sup><sub>V</sub> perturbative Z<sup>bb</sup><sub>V</sub> (tree level, 20% error) *Q*<sub>bl</sub> = 1
 ▶ Scaling violations observed to be small





► Allows to determine the CKM matrix element V<sub>ub</sub> from the experimental branching ratio

$$\frac{d\Gamma(B \to \pi l\nu)}{dq^2} = \frac{G_F^2 |V_{ub}|^2}{192\pi^3 m_B^3} \left[ (m_B^2 + m_\pi^2 - q^2)^2 - 4m_B^2 m_\pi^2 \right]^{3/2} |f_+(q^2)|^2$$

► Tension between exclusive determination and inclusive determinations of  $V_{ub}$  is greater than  $3\sigma$ 

| Introduction | Actions | Tuning  | LPT  | Results bb | B-physics |
|--------------|---------|---------|------|------------|-----------|
| 0000         | 00      | 0000000 | 0000 | 0000000    | 00000000  |

## $B \rightarrow \pi I \nu$ form factor

- $\blacktriangleright$  Compute matrix element of the  $b \rightarrow u$  vector current between B-meson and pion
- Fix location of pion at  $t_0$  and B meson at  $T t_{sink} t_0$
- ▶ Vary operator location  $t_{V_{\mu}}$  in that range
- ▶ *B*-meson is at rest, inject momentum on pion side
- Using partially quenched daughter quark-masses should help to better resolve quark-mass dependence and pion-energy dependence



| Introduction | Actions | Tuning  | LPT  | Results bb | B-physics | Conclusion |
|--------------|---------|---------|------|------------|-----------|------------|
| 0000         | 00      | 0000000 | 0000 | 0000000    | 000000000 |            |
|              |         |         |      |            |           |            |

## $B ightarrow \pi I \nu$ form factor

 $\blacktriangleright$   $f_+$  is a linear combination of  $f_{||}$  and  $f_{\perp}$ 

$$f_+(q^2) = rac{1}{\sqrt{2m_0^B}} \left[ f_{||}(E_\pi) + (m_0^B - E_\pi) f_{\perp}(E_\pi) 
ight] \, ,$$

▶ Compute  $f_{\parallel}$  and  $f_{\perp}$  from the ratio

$$R_{3,\mu}^{B\to\pi}(t,T) = \frac{C_{3,\mu}^{B\to\pi}(t,T)}{\sqrt{C_2^{\pi}(t)C_2^{B}(T-t)}} \sqrt{\frac{2E_0^{\pi}}{\exp(-E_0^{\pi}t)\exp(-m_0^{B}t)}}$$

with 
$$f_{\parallel}^{\mathsf{lat}} = \lim_{\substack{t-t_0 \to \infty \\ T-t \to \infty}} R_{3,0}^{B \to \pi}$$
 and  $f_{\perp}^{\mathsf{lat}} = \lim_{\substack{t-t_0 \to \infty \\ T-t \to \infty}} \frac{1}{p_{\pi}^{i}} R_{3,i}^{B \to \pi}$ 

| Introduction | Actions | Tuning  | LPT  | Results bb | B-physics |
|--------------|---------|---------|------|------------|-----------|
| 0000         | 00      | 0000000 | 0000 | 0000000    | 00000000  |
|              |         |         |      |            |           |

### First Results for $B \rightarrow \pi I \nu$ [T. Kawanai]



▶ 1636 measurements  $m'_{sea} = m'_{val} = 0.005$ ,  $m_0 a = 8.40$ ,  $c_P = 5.80$ ,  $\zeta = 3.20$ ▶  $t_0 = 0$ ,  $T = t_{sink} = 20$ 

| Introduction<br>0000 | Actions<br>00 | Tuning<br>00000000 | LPT<br>0000 | Results <i>bb</i> | B-physics<br>0000000● | Conclusion |
|----------------------|---------------|--------------------|-------------|-------------------|-----------------------|------------|
| ~                    |               | -                  |             |                   |                       |            |





- $\blacktriangleright$  Computation of  $B \rightarrow B$  (to get  $Z_v^{bb})$  similar to  $B \rightarrow \pi$
- Independent of the light spectator quark mass
- ▶ Significantly reduce statistical uncertainty by using strange quark and considering  $B_s \rightarrow B_s$
- ▶ 1636 measurements  $m_{sea}^{l} = 0.005$ ,  $m_{val}^{l} = 0.005$ , 0.0343 and T = 20 $m_{0}a = 8.40$ ,  $c_{P} = 5.80$ ,  $\zeta = 3.20$

| Introduction<br>0000 | Actions<br>00 | Tuning<br>00000000 | LPT<br>0000 | Results $b\overline{b}$ | <i>B</i> -physics | Conclusion |
|----------------------|---------------|--------------------|-------------|-------------------------|-------------------|------------|
| Conclusi             | on            |                    |             |                         |                   |            |

- We have completed tuning the parameters of the RHQ action for b-quarks, and find good agreement between our predictions for bottomonium masses and fine splittings with experiment.
- Given this success, we are now using this method for B-meson quantities such as decay constants and form factors, and expect to obtain errors competitive with other groups.
- The RHQ action can also be used for charm quarks, and Hao Peng is currently performing the necessary parameter tuning.
- ► We should have results for decay constants, mixing parameters, and form factors within the next year, and maybe sooner!